- Browse by Subject
Browsing by Subject "acute myeloid leukemia"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Aberrant nuclear factor-kappa B activity in acute myeloid Leukemia: from molecular pathogenesis to therapeutic target(Impact, 2015) Zhou, Jianbiao; Ching, Ying Qing; Chng, Wee-Joo; Pathology and Laboratory Medicine, School of MedicineThe overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade®), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).Item Access provided by IUPUI University Library, Indiana (Ruth Lilly) Altmetric: 0Citations: 2More detail Letter to the Editor Phosphatase PRL2 promotes AML1-ETO-induced acute myeloid leukemia(Nature, 2017) Kobayashi, Michihiro; Chen, Sisi; Bai, Yunpeng; Yao, Chonghua; Gao, Rui; Sun, Xiao-Jian; Mu, Chen; Twiggs, Taylor A.; Yu, Zhi-Hong; Boswell, H. Scott; Yoder, Mervin C.; Kapur, Reuben; Mulloy, James C.; Zhang, Zhong-Yin; Liu, Yan; Pediatrics, School of MedicineItem Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group(Elsevier, 2018) Xu, Xinjie; Bryke, Christine; Sukhanova, Madina; Huxley, Emma; Dash, D. P.; Dixon-Mciver, Amanda; Fang, Min; Griepp, Patricia T.; Hodge, Jennelle C.; Iqbal, Anwar; Jeffries, Sally; Kanagal-Shamanna, Rashmi; Quintero-Rivera, Fabiola; Shetty, Shashi; Slovak, Marilyn L.; Yenamandra, Ashwini; Lennon, Patrick A.; Raca, Gordana; Medical and Molecular Genetics, School of MedicineStructural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML.Item The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells(Nature, 2016) Chang, Emily; Ganguly, Sudipto; Rajkhowa, Trivikram; Gocke, Christopher D.; Levis, Mark; Konig, Heiko; Department of Medicine, IU School of MedicineEffective treatment regimens for elderly acute myeloid leukemia (AML) patients harboring internal tandem duplication mutations in the FMS-like tyrosine kinase-3 (FLT3) gene (FLT3/ITD) are lacking and represent a significant unmet need. Recent data on the effects of FLT3 tyrosine kinase inhibitors on FLT3/ITD+ AML showed promising clinical activity, including in elderly patients. DNA methyltransferase (DNMT) inhibitors such as decitabine (5-aza-2-deoxycytidine, DEC) and 5-azacitidine (AZA) demonstrated clinical benefit in AML, are well tolerated and are associated with minimal increases in FLT3 ligand, which can represent a potential resistance mechanism to FLT3 inhibitors. In addition, both FLT3 and DNMT inhibition are associated with the induction of terminal differentiation of myeloid blasts. Consequently, there is a strong theoretical rationale for combining FLT3 and DNMT inhibition for FLT3/ITD+ AML. We therefore sought to study the anti-leukemic effects of DEC, AZA and FLT3 inhibitors, either as single agents or in combination, on AML cell lines and primary cells derived from newly diagnosed and relapsed AML patients. Our studies indicate that combined treatment using FLT3 inhibition and hypomethylation confers synergistic anti-leukemic effects, including apoptosis, growth inhibition and differentiation. The simultaneous administration of AZA and FLT3 inhibition appears to be the most efficacious combination in this regard. These drugs may provide a novel therapeutic approach for FLT3/ITD+ AML, in particular for older patients.Item Combination of sorafenib, vorinostat and bortezomib for the treatment of poor-risk AML: report of two consecutive clinical trials(Elsevier, 2019-02) Sayar, Hamid; Cripe, Larry D.; Saliba, Antoine N.; Abu Zaid, Mohammad; Konig, Heiko; Boswell, H. Scott; Medicine, School of MedicineItem Genotoxic stresses promote clonal expansion of hematopoietic stem cells expressing mutant p53(Nature, 2018) Chen, Sisi; Gao, Rui; Yao, Chonghua; Kobayashi, Michihiro; Liu, Stephen Z.; Yoder, Mervin C.; Broxmeyer, Hal; Kapur, Reuben; Boswell, H. Scott; Mayo, Lindsey D.; Liu, Yan; Pediatrics, School of MedicineItem How Epigenetic Therapy Beats Adverse Genetics in Monosomy Karyotype AML(AACR, 2021-02) O'Hagan, Heather M.; Rassool, Feyruz V.; Nephew, Kenneth P.; Radiation Oncology, School of MedicineThe study by Greve and colleagues, in this issue of Cancer Research, provides new molecular insights into the intriguing clinical activity of DNA hypomethylating agents (HMA) in patients with acute myeloid leukemia (AML) with monosomal karyotypes. Patients with AML with adverse monosomal karyotypes are known to benefit from HMAs, but not cytarabine, a cytidine analog without HMA activity, but the specific molecular mechanisms remain poorly understood. The authors investigated the mechanistic effects of HMAs on gene reactivation in AML in the context of the most common monosomal karyotypes, genetic deletion of chromosome 7q and 5q. They identified genes with tumor-suppressive properties, an endogenous retrovirus cooperatively repressed by DNA hypermethylation, and increased genetic losses on hemizygous chromosomal regions versus normal biallelic regions in AML cell models. Treatment with HMAs preferentially induced expression of these hemizygous genes to levels similar to those of genes in a biallelic state. In addition to CpG hypomethylation, decitabine treatment resulted in histone acetylation and an open chromatin configuration specifically at hemizygous loci. By using primary blood blasts isolated from patients with AML receiving decitabine and AML patient-derived xenograft models established from patients with either monosomal karyotypes or normal cytogenetics, Greve and colleagues both validated their findings in primary patient samples and demonstrated superior antileukemic activity of decitabine compared with chemotherapy with cytarabine. These mechanistic insights into how epigenetic therapy beats adverse genetics in monosomy karyotype AML will open new therapeutic opportunities for a difficult-to-treat patient group.Item Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment(MDPI, 2017-07-31) Gbolahan, Olumide Babajide; Zeidan, Amer M.; Stahl, Maximilian; Abu Zaid, Mohammad; Farag, Sherif; Paczesny, Sophie; Konig, Heiko; Medicine, School of MedicineIntensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML) treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.Item Independent Prognostic Significance of Monosomy 17 and Impact of Karyotype Complexity in Monosomal Karyotype/Complex Karyotype Acute Myeloid Leukemia: Results from Four ECOG-ACRIN Prospective Therapeutic Trials(Elsevier, 2017-08) Strickland, Stephen A.; Sun, Zhuoxin; Ketterling, Rhett P.; Cherry, Athena M.; Cripe, Larry D.; Dewald, Gordon; Fernandez, Hugo; Hicks, Gary A.; Higgins, Rodney R.; Lazarus, Hillard M.; Litzow, Mark R.; Luger, Selina M.; Paietta, Elisabeth M.; Rowe, Jacob M.; Vance, Gail H.; Wiernik, Peter; Wiktor, Anne E.; Zhang, Yanming; Tallman, Martin S.; Department of Medicine, IU School of MedicineThe presence of a monosomal karyotype (MK+) and/or a complex karyotype (CK+) identifies subcategories of AML with poor prognosis. The prognostic significance of the most common monosomies (monosomy 5, monosomy 7, and monosomy 17) within MK+/CK+ AML is not well defined. We analyzed data from 1,592 AML patients age 17–93 years enrolled on ECOG-ACRIN therapeutic trials. The majority of MK+ patients (182/195; 93%) were MK+/CK+ with 87% (158/182) having ≥5 clonal abnormalities (CK≥ 5). MK+ patients with karyotype complexity ≤4 had a median overall survival (OS) of 0.4y compared to 1.0y for MK- with complexity ≤4 (p < 0.001), whereas no OS difference was seen in MK+ vs. MK- patients with CK≥ 5 (p = 0.82). Monosomy 5 (93%; 50/54) typically occurred within a highly complex karyotype and had no impact on OS (0.4y; p = 0.95). Monosomy 7 demonstrated no impact on OS in patients with CK≥ 5 (p = 0.39) or CK ≤ 4 (p = 0.44). Monosomy 17 appeared in 43% (68/158) of CK≥ 5 patients and demonstrated statistically significant worse OS (0.4y) compared to CK≥ 5 patients without monosomy 17 (0.5y; p = 0.012). Our data suggest that the prognostic impact of MK+ is limited to those with less complex karyotypes and that monosomy 17 may independently predict for worse survival in patients with AML.Item Mutant p53 enhances leukemia-initiating cell self-renewal to promote leukemia development(Nature, 2019-06) Nabinger, Sarah C.; Chen, Sisi; Gao, Rui; Yao, Chonghua; Kobayashi, Michihiro; Vemula, Sasidhar; Fahey, Aidan C.; Wang, Christine; Daniels, Cecil; Boswell, H. Scott; Sandusky, George E.; Mayo, Lindsey D.; Kapur, Reuben; Liu, Yan; Pediatrics, School of Medicine