- Browse by Subject
Browsing by Subject "ZIP4"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The novel ZIP4 regulation and its role in ovarian cancer(Impact Journals, 2017-09-30) Fan, Qipeng; Cai, Qingchun; Li, Pengfei; Wang, Wenyan; Wang, Jing; Gerry, Emily; Wang, Tian-Li; Shih, Ie-Ming; Nephew, Kenneth P.; Xu, Yan; Obstetrics and Gynecology, School of MedicineOur RNAseq analyses revealed that ZIP4 is a top gene up-regulated in more aggressive ovarian cancer cells. ZIP4's role in cancer stem cells has not been reported in any type of cancer. In addition, the role and regulation of ZIP4, a zinc transporter, have been studied in the context of extracellular zinc transporting. Factors other than zinc with ZIP4 regulatory effects are essentially unknown. ZIP4 expression and its regulation in epithelial ovarian cancer cells was assessed by immunoblotting, quantitative PCR, or immunohistochemistry staining in human ovarian tissues. Cancer stem cell-related activities were examined to evaluate the role of ZIP4 in human high-grade serous ovarian cancer cells in vitro and in vivo. RNAi and CRISPR techniques were used to knockdown or knockout ZIP4 and related genes. Ovarian cancer tissues overexpressed ZIP4 when compared with normal and benign tissues. ZIP4 knockout significantly reduced several cancer stem cell-related activities in EOC cells, including proliferation, anoikis-resistance, colony-formation, spheroid-formation, drug-resistance, and side-population in vitro. ZIP4-expressing side-population highly expressed known CSC markers ALDH1 and OCT4. ZIP4 knockout dramatically reduced tumorigenesis and ZIP4 overexpression increased tumorigenesis in vivo. In addition, the ZIP4-expressing side-population had the tumor initiating activity. Moreover, the oncolipid lysophosphatic acid effectively up-regulated ZIP4 expression via the nuclear receptor peroxisome proliferator-activated receptor gamma and lysophosphatic acid 's promoting effects in cancer stem cell-related activities in HGSOC cells was at least partially mediated by ZIP4 in an extracellular zinc-independent manner. Our critical data imply that ZIP4 is a new and important cancer stem cell regulator in ovarian cancer. Our data also provide an innovative interpretation for the apparent disconnection between low levels of zinc and up-regulation of ZIP4 in ovarian cancer tissues.Item ZIP4 Is a Novel Cancer Stem Cell Marker in High-Grade Serous Ovarian Cancer(MDPI, 2020-12-09) Fan, Qipeng; Zhang, Wen; Emerson, Robert E.; Xu, Yan; Obstetrics and Gynecology, School of MedicineHigh-grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is functionally involved in cancer stem cell (CSC)-related cellular activities in HGSOC. Here, we identified ZIP4 as a novel CSC marker in HGSOC. Fluorescence-activated cell sorter (FACS)-sorted ZIP4+, but not ZIP4- cells, formed spheroids and displayed self-renewing and differentiation abilities. Over-expression of ZIP4 conferred drug resistance properties in vitro. ZIP4+, but not ZIP4- cells, formed tumors/ascites in vivo. We conducted limiting dilution experiments and showed that 100-200 ZIP4+ cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Genetic compensation studies showed that NOTCH3, but not NOTCH1, was a critical downstream mediator of ZIP4. Furthermore, NOTCH3, but not NOTCH1, physically bound to ZIP4. Collectively, our data suggest that ZIP4 is a novel CSC marker and the new ZIP4-NOTCH3 axis represents important therapeutic targets in HGSOC.