- Browse by Subject
Browsing by Subject "Vacuum ultraviolet spectroscopy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A systematic study of the absorbance of the nitro functional group in the vacuum UV region(Elsevier, 2021-11-15) Cruse, Courtney A.; Goodpaster, John V.; Chemistry and Chemical Biology, School of ScienceThe nitro functional group (NO) features strongly in compounds such as explosives, pharmaceuticals, and fragrances. However, its gas phase absorbance characteristics in the vacuum UV region (120-200 nm) have not been systematically studied. Gas chromatography/vacuum UV spectroscopy (GC/VUV) was utilized to study the gas phase VUV spectra of various nitrated compounds (e.g., nitrate esters (-R-O-NO), nitramines (R-N-NO), nitroaromatics (Ar-NO), and nitroalkanes (R-NO)). The nitro absorption maximum appeared over a wide range (170-270 nm) and its wavelength and intensity were highly dependent upon the structure of the rest of the molecule. For example, the nitroalkanes exhibited a trend in that the ratio of the relative absorption intensity between these two absorption features between the alkyl group (<150 nm) and the nitro group (200 nm) increases as the molecular weight increases. It was observed that the addition of multiple nitro functional groups on benzene or toluene resulted in an increase in intensity and blue shift from approximately 240 nm-210 nm. Nitrate esters exhibited an absorption between 170 nm and 210 nm and absorbance increased with increasing nitrogen content. The relative diversity of the spectra obtained was analyzed by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). These calculations revealed that the spectra of all the compounds analyzed could be reliably differentiated without any misclassifications.Item Quantitative analysis of smokeless powder particles in post-blast debris via gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV)(Wiley, 2022) Reavis, Madison; Goodpaster, John; Forensic and Investigative Sciences, School of ScienceForensic analysis of smokeless powder particles recovered from the debris of an improvised explosive device can provide information about the type of smokeless powder used and can aid investigation efforts. In this study, quantitative methods were used to yield information about the difference in the chemical composition of the particles pre‐ and post‐blast. The technique, gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV), was able to quantify nitroglycerin, 2,4‐dinitrotoluene, diphenylamine, ethyl centralite, and di‐n‐butyl phthalate in pre‐ and post‐blast smokeless powder particles using heptadecane as an internal standard. Post‐blast debris was obtained via controlled explosions with assistance from the Indiana State Police Bomb Squad. Two galvanized steel and two polyvinyl chloride pipe bombs were assembled. Two devices contained single‐base smokeless powder and two contained double‐base smokeless powder. 2,4‐dinitrotoluene and diphenylamine were successfully quantified in the single‐base smokeless powder post‐blast debris while nitroglycerin, diphenylamine, and ethyl centralite were successfully quantified in the double‐base smokeless powder post‐blast debris. Compounds were detected at concentrations as low as 9 μg of 2,4‐dinitrotoluene per mg, <3 μg of diphenylamine per mg, 131 μg of nitroglycerin per mg, and <3 μg of ethyl centralite per mg. Concentration changes between pre‐ and post‐blast smokeless powder particles were determined as well as microscopic differences between pre‐ and post‐blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives.