- Browse by Subject
Browsing by Subject "Tumor cells"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Cancer-associated muscle weakness: What’s bone got to do with it?(SpringerNature, 2015-05-20) Waning, David L.; Guise, Theresa A.; Department of Medicine, IU School of MedicineCancer-associated muscle weakness is an important paraneoplastic syndrome for which there is currently no treatment. Tumor cells commonly metastasize to bone in advanced cancer to disrupt normal bone remodeling and result in morbidity that includes muscle weakness. Tumor in bone stimulates excessive osteoclast activity, which causes the release of growth factors stored in the mineralized bone matrix. These factors fuel a feed-forward vicious cycle of tumor growth in bone and bone destruction. Recent evidence indicates that these bone-derived growth factors can act systemically to cause muscle weakness. Muscle weakness can be caused by reduced muscle mass or reduced muscle function; in advanced disease, it is likely due to a combination of both reduced quantity and quality of muscle. In this review, we discuss possible mechanisms that lead to skeletal muscle weakness due to bone metastases.Item Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells(Springer Nature, 2018-09-06) Enane, Francis O.; Saunthararajah, Yogen; Korc, Murray; Medicine, School of MedicineChemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance. An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation. Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly unknown. We performed a systematic review of published literature (January 2007-June 2018) to identify gene pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC), ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies. Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes (e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-clinical and clinical trial literature.Item Ethnicity-dependent and -independent heterogeneity in healthy normal breast hierarchy impacts tumor characterization(Nature Publishing Group, 2015-08-27) Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima; Department of Surgery, IU School of MedicineRecent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations.Item Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2(Public Library of Science, 2018-02-02) Babu, Mani Shankar; Mahanta, Sailendra; Lakhter, Alexander J.; Hato, Takashi; Paul, Subhankar; Naidu, Samisubbu R.; Microbiology and Immunology, School of MedicineReliance on aerobic glycolysis is one of the hallmarks of cancer. Although pyruvate kinase M2 (PKM2) is a key mediator of glycolysis in cancer cells, lack of selective agents that target PKM2 remains a challenge in exploiting metabolic pathways for cancer therapy. We report that unlike its structural analog shikonin, a known inhibitor of PKM2, lapachol failed to induce non-apoptotic cell death ferroxitosis in hypoxia. However, melanoma cells treated with lapachol showed a dose-dependent inhibition of glycolysis and a corresponding increase in oxygen consumption. Accordingly, in silico studies revealed a high affinity-binding pocket for lapachol on PKM2 structure. Lapachol inhibited PKM2 activity of purified enzyme as well as in melanoma cell extracts. Blockade of glycolysis by lapachol in melanoma cells led to decreased ATP levels and inhibition of cell proliferation. Furthermore, perturbation of glycolysis in melanoma cells with lapachol sensitized cells to mitochondrial protonophore and promoted apoptosis. These results present lapachol as an inhibitor of PKM2 to interrogate metabolic plasticity in tumor cells.Item Spleen tyrosine kinase-mediated autophagy is required for epithelial-mesenchymal plasticity and metastasis in breast cancer(American Association for Cancer Research, 2019-04-15) Shinde, Aparna; Hardy, Shana D.; Kim, Dongwook; Akhand, Saeed Salehin; Jolly, Mohit Kumar; Wang, Wen-Hung; Anderson, Joshua C.; Khodadadi, Ryan B.; Brown, Wells S.; George, Jason T.; Liu, Sheng; Wan, Jun; Levine, Herbert; Willey, Christopher D.; Krusemark, Casey J.; Geahlen, Robert L.; Wendt, Michael K.; Medical and Molecular Genetics, School of MedicineThe ability of breast cancer cells to transiently transition between epithelial and mesenchymal states contributes to their metastatic potential. Therefore, driving tumor cells into a stable mesenchymal state, as opposed to complete tumor cell eradication, presents an opportunity to pharmacologically limit disease progression by promoting an asymptomatic state of dormancy. Here we compare a reversible model of epithelial-mesenchymal transition (EMT) induced by TGF-β to a stable mesenchymal phenotype induced by chronic exposure to the ErbB kinase inhibitor lapatinib. Only cells capable of returning to an epithelial phenotype resulted in skeletal metastasis. Gene expression analyses of the two mesenchymal states indicated similar transition expression profiles. A potently downregulated gene in both datasets was spleen tyrosine kinase (SYK). In contrast to this similar diminution in mRNA, kinome analyses using a peptide array and DNA-conjugated peptide substrates showed a robust increase in SYK activity upon TGF-β-induced EMT only. SYK was present in cytoplasmic RNA processing depots known as P-bodies formed during the onset of EMT, and SYK activity was required for autophagy-mediated clearance of P-bodies during mesenchymal-epithelial transition (MET). Genetic knockout of autophagy related 7 (ATG7) or pharmacological inhibition of SYK activity with fostamatib, a clinically approved inhibitor of SYK, prevented P-body clearance and MET, inhibiting metastatic tumor outgrowth. Overall, the current study suggests assessment of SYK activity as a biomarker for metastatic disease and the use of fostamatinib as a means to stabilize the latency of disseminated tumor cells.Item TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis(SpringerNature, 2015-07-08) Stayrook, Keith R.; Mack, Justin K.; Cerabona, Donna; Edwards, Daniel F.; Bui, Hai H.; Niewolna, Maria; Fournier, Pierrick G.J.; Mohamma, Khalid S.; Waning, David L.; Guise, Theresa A.; Department of Pharmacology and Toxicology, IU School of MedicineMechanistic understanding of the preferential homing of circulating tumor cells to bone and their perturbation on bone metabolism within the tumor-bone microenvironment remains poorly understood. Alteration in both transforming growth factor β (TGFβ) signaling and sphingolipid metabolism results in the promotion of tumor growth and metastasis. Previous studies using MDA-MB-231 human breast cancer-derived cell lines of variable metastatic potential were queried for changes in sphingolipid metabolism genes to explore correlations between TGFβ dependence and bone metastatic behavior. Of these genes, only sphingosine kinase-1 (SPHK1) was identified to be significantly increased following TGFβ treatment. Induction of SPHK1 expression correlated to the degree of metastatic capacity in these MDA-MB-231-derived cell lines. We demonstrate that TGFβ mediates the regulation of SPHK1 gene expression, protein kinase activity and is critical to MDA-MB-231 cell viability. Furthermore, a bioinformatic analysis of human breast cancer gene expression supports SPHK1 as a hallmark TGFβ target gene that also bears the genetic fingerprint of the basal-like/triple-negative breast cancer molecular subtype. These data suggest a potential new signaling axis between TGFβ/SphK1 that may have a role in the development, prognosis or the clinical phenotype associated with tumor-bone metastasis.