- Browse by Subject
Browsing by Subject "Treg cells"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item BATF Regulates T Regulatory Cell Functional Specification and Fitness of Triglyceride Metabolism in Restraining Allergic Responses(American Association of Immunologists, 2021) Xu, Chengxian; Fu, Yongyao; Liu, Sheng; Trittipo, Jack; Lu, Xiaoyu; Qi, Rong; Du, Hong; Yan, Cong; Zhang, Chi; Wan, Jun; Kaplan, Mark H.; Yang, Kai; Pediatrics, School of MedicinePreserving appropriate function and metabolism in regulatory T (Treg) cells is crucial for controlling immune tolerance and inflammatory responses. Yet how Treg cells coordinate cellular metabolic programs to support their functional specification remains elusive. In this study, we report that BATF couples the TH2-suppressive function and triglyceride (TG) metabolism in Treg cells for controlling allergic airway inflammation and IgE responses. Mice with Treg-specific ablation of BATF developed an inflammatory disorder characterized by TH2-type dominant responses and were predisposed to house dust mite-induced airway inflammation. Loss of BATF enabled Treg cells to acquire TH2 cell-like characteristics. Moreover, BATF-deficient Treg cells displayed elevated levels of cellular TGs, and repressing or elevating TGs, respectively, restored or exacerbated their defects. Mechanistically, TCR/CD28 costimulation enhanced expression and function of BATF, which sustained IRF4 activity to preserve Treg cell functionality. Thus, our studies reveal that BATF links Treg cell functional specification and fitness of cellular TGs to control allergic responses, and suggest that therapeutic targeting of TG metabolism could be used for the treatment of allergic disease.Item BATF sustains homeostasis and functionality of bone marrow Treg cells to preserve homeostatic regulation of hematopoiesis and development of B cells(Frontiers Media, 2023-02-22) Tikka, Chiranjeevi; Beasley, Lindsay; Xu, Chengxian; Yang, Jing; Cooper, Scott; Lechner, Joseph; Gutch, Sarah; Kaplan, Mark H.; Capitano, Maegan; Yang, Kai; Pediatrics, School of MedicineBone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.Item Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors(Biomed Central, 2019-06-04) Hagar, Amit; Wang, Zemin; Koyama, Sachiko; Serrano, Josua Aponte; Melo, Luma; Vargas, Stephanie; Carpenter, Richard; Foley, John; Dermatology, School of MedicineBACKGROUND: Aerobic exercise has been shown to slow tumor progression in rodents and humans, but the mechanisms behind this effect are still unclear. Here we show that aerobic exercise in the form of chronic endurance training suppresses tumor recruitment of FoxP3+ Treg cells thus enhancing antitumor immune efficiency. METHODS: Adult wild-type and athymic BALB/c female mice were endurance-trained for 8 weeks. Circulating leukocytes as well as muscle and liver mtDNA copy number were compared to aged-matched concurrent sedentary controls to establish systemic effects. 4 T1 murine mammary tumor cells were injected subcutaneously to the 4th mammary pad at the end of the training period. Tumor growth and survival rates were compared, together with antitumor immune response. RESULTS: Exercised wild-type had 17% slower growth rate, 24% longer survival, and 2-fold tumor-CD+ 8/FoxP3+ ratio than sedentary controls. Exercised athymic BALB/c females showed no difference in tumor growth or survival rates when compared to sedentary controls. CONCLUSIONS: Cytotoxic T cells are a significant factor in endurance exercise-induced suppression of tumor growth. Endurance exercise enhances antitumor immune efficacy by increasing intratumoral CD8+/FoxP3+ ratio.Item The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity(Elsevier, 2021-06) Xu, Chengxian; Sun, Shaogang; Johnson, Travis; Qi, Rong; Zhang, Siyuan; Zhang, Jie; Yang, Kai; Pediatrics, School of MedicineT regulatory (Treg) cells are crucial to maintain immune tolerance and repress antitumor immunity, but the mechanisms governing their cellular redox homeostasis remain elusive. We report that glutathione peroxidase 4 (Gpx4) prevents Treg cells from lipid peroxidation and ferroptosis in regulating immune homeostasis and antitumor immunity. Treg-specific deletion of Gpx4 impairs immune homeostasis without substantially affecting survival of Treg cells at steady state. Loss of Gpx4 results in excessive accumulation of lipid peroxides and ferroptosis of Treg cells upon T cell receptor (TCR)/CD28 co-stimulation. Neutralization of lipid peroxides and blockade of iron availability rescue ferroptosis of Gpx4-deficient Treg cells. Moreover, Gpx4-deficient Treg cells elevate generation of mitochondrial superoxide and production of interleukin-1β (IL-1β) that facilitates T helper 17 (TH17) responses. Furthermore, Treg-specific ablation of Gpx4 represses tumor growth and concomitantly potentiates antitumor immunity. Our studies establish a crucial role for Gpx4 in protecting activated Treg cells from lipid peroxidation and ferroptosis and offer a potential therapeutic strategy to improve cancer treatment.