- Browse by Subject
Browsing by Subject "Toxoplasma gondii"
Now showing 1 - 10 of 34
Results Per Page
Sort Options
Item A common parasite could one day deliver drugs to the brain − how scientists are turning Toxoplasma gondii from foe into friend(The Conversation US, Inc., 2024-08-07) Sullivan, BillItem AP2IX-4, a cell cycle regulated nuclear factor, modulates gene expression during bradyzoite development in toxoplasma gondii(2017-01-10) Huang, Sherri Y.; Arrizabalaga, Gustavo; Sullivan, William J., Jr.; Lu, Tao; Takagi, Yuichiro; Zhang, Jian-TingToxoplasma gondii is a ubiquitous, protozoan parasite contributing significantly to global human and animal health. In the host, this obligate intracellular parasite converts into a latent tissue cyst form known as the bradyzoite, which is impervious to the immune response. The tissue cysts facilitate wide-spread transmission through the food chain and give rise to chronic toxoplasmosis in immune compromised patients. In addition, they may reactivate into replicating tachyzoites which cause tissue damage and disseminated disease. Current available drugs do not appear to have appreciable activity against latent bradyzoites. Therefore, a better understanding of the molecular mechanisms that drive interconversion between tachyzoite and bradyzoite forms is required to manage transmission and pathogenesis of Toxoplasma. Conversion to the bradyzoite is accompanied by an altered transcriptome, but the molecular players directing this process are largely uncharacterized. Studies of stage-specific promoters revealed that conventional cis-acting mechanisms operate to regulate developmental gene expression during tissue cyst formation. The major class of transcription factor likely to work through these cis-regulatory elements appears to be related to the Apetala-2 (AP2) family in plants. The Toxoplasma genome contains nearly 70 proteins harboring at least one predicted AP2 domain, but to date only three of these T. gondii AP2 proteins have been linked to bradyzoite development. We show that the putative T. gondii transcription factor, AP2IX-4, is localized to the parasite nucleus and exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had negligible effect on tachyzoite replication, but resulted in a reduced frequency of bradyzoite cysts in response to alkaline stress induction – a defect that is reversible by complementation. Microarray analyses revealed an enhanced activation of bradyzoite-associated genes in the AP2IX-4 knockout during alkaline conditions. In mice, the loss of AP2IX-4 resulted in a modest virulence defect and reduced brain cyst burden. Complementation of the AP2IX-4 knockout restored cyst counts to wild-type levels. These findings illustrate the complex role of AP2IX-4 in bradyzoite development and that certain transcriptional mechanisms responsible for tissue cyst development operate across parasite division.Item AP2XII-2 coordinates transcriptional repression for Toxoplasma gondii sexual commitment(bioRxiv, 2022) Srivastava, Sandeep; Holmes, Michael J.; White, Michael W.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineToxoplasma gondii is a widespread protozoan parasite that has significant impact on human and veterinary health. The parasite undergoes a complex life cycle involving multiple hosts and developmental stages. How Toxoplasma transitions between life cycle stages is poorly understood, yet central to controlling transmission. Of particular neglect are the factors that contribute to its sexual development, which takes place exclusively in feline intestines. While epigenetic repressors have been shown to play an important role in silencing spurious gene expression of sexually committed parasites, the specific factors that recruit this generalized machinery to the appropriate genes remains largely unexplored. Here, we establish that a member of the AP2 transcription factor family, AP2XII-2, is targeted to genomic loci associated with sexually committed parasites along with the epigenetic regulators of transcriptional silencing, HDAC3 and MORC. Despite widespread association with gene promoters, AP2XII-2 is required for silencing of relatively few genes. Using CUT&Tag methodology, we identify two major genes associated with sexual development downstream of AP2XII-2 control, AP2X-10 and the amino acid hydroxylase AAH1. Our findings show that AP2XII-2 is a key contributor to the gene regulatory pathways modulating Toxoplasma sexual development. IMPORTANCE: Toxoplasma gondii is a parasite that undergoes its sexual stage exclusively in feline intestines, making cats a major source of transmission. A better understanding of the proteins controlling the parasite’s life cycle stage transitions is needed for the development of new therapies aimed to treat toxoplasmosis and transmission of the infection. Genes that regulate the sexual stages need to be turned on and off at the appropriate times, activities that are mediated by specific transcription factors that recruit general machinery to silence or activate gene expression. In this study, we identify a transcription factor called AP2XII-2 as being important for repression of a subset of sexual stage genes, including a sexual stage-specific AP2 factor (AP2X-10) and a protein (AAH1) required to construct the infectious oocysts expelled by infected cats.Item BASE EXCISION REPAIR APURINIC/APYRIMIDINIC ENDONUCLEASES IN APICOMPLEXAN PARASITE TOXOPLASMA GONDII(2012-03-19) Onyango, David O.; Sullivan, William J., Jr.; Chou, Kai-Ming; Georgiadis, Millie M.; Queener, Sherry F.; Vasko, Michael R.Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. Toxoplasma infection is a serious threat to immunocompromised individuals such as AIDS patients and organ transplant recipients. Side effects associated with current drug treatment calls for identification of new drug targets. DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen species produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host immune response. Most of the oxidative DNA damage is repaired through the base excision repair (BER) pathway, of which, the apurinic /apyrimidinic (AP) endonucleases are the rate limiting enzymes. Toxoplasma possesses two different AP endonucleases. The first, TgAPE, is a magnesium-dependent homologue of the human APE1 (hAPE1), but considerably divergent from hAPE1. The second, TgAPN, is a magnesium-independent homologue of yeast (Saccharomyces cerevisiae) APN1 and is not present in mammals. We have expressed and purified recombinant versions of TgAPE and TgAPN in E. coli and shown AP endonuclease activity. Our data shows that TgAPN is the more abundant AP endonuclease and confers protection against a DNA damaging agent when over-expressed in Toxoplasma tachyzoites. We also generated TgAPN knockdown Toxoplasma tachyzoites to establish that TgAPN is important for parasite protection against DNA damage. We have also identified pharmacological inhibitors of TgAPN in a high-throughput screen. The lead compound inhibits Toxoplasma replication at concentrations that do not have overt toxicity to the host cells. The importance of TgAPN in parasite physiology and the fact that humans lack APN1 makes TgAPN a promising candidate for drug development to treat toxoplasmosis.Item The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model(Wiley, 2017-07) Colinot, Darrelle L.; Garbuz, Tamila; Bosland, Maarten C.; Wang, Liang; Rice, Susan E.; Sullivan, William J., Jr.; Arrizabalaga, Gustavo; Jerde, Travis J.; Pharmacology and Toxicology, School of MedicineBACKGROUND: Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. METHODS: Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. RESULTS: We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. CONCLUSIONS: This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia.Item Emerging Therapeutic Targets Against Toxoplasma gondii: Update on DNA Repair Response Inhibitors and Genotoxic Drugs(Frontiers, 2020-06-12) Angel, Sergio O.; Vanagas, Laura; Ruiz, Diego M.; Cristaldi, Constanza; Saldarriaga Cartagena, Ana M.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineToxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.Item An ensemble of specifically targeted proteins stabilizes cortical microtubules in the human parasite Toxoplasma gondii(American Society for Cell Biology, 2016-02-01) Liu, Jun; He, Yudou; Benmerzouga, Imaan; Sullivan, William J., Jr.; Morrissette, Naomi S.; Murray, John M.; Hu, Ke; Department of Pharmacology and Toxicology, IU School of MedicineAlthough all microtubules within a single cell are polymerized from virtually identical subunits, different microtubule populations carry out specialized and diverse functions, including directional transport, force generation, and cellular morphogenesis. Functional differentiation requires specific targeting of associated proteins to subsets or even subregions of these polymers. The cytoskeleton of Toxoplasma gondii, an important human parasite, contains at least five distinct tubulin-based structures. In this work, we define the differential localization of proteins along the cortical microtubules of T. gondii, established during daughter biogenesis and regulated by protein expression and exchange. These proteins distinguish cortical from mitotic spindle microtubules, even though the assembly of these subsets is contemporaneous during cell division. Finally, proteins associated with cortical microtubules collectively protect the stability of the polymers with a remarkable degree of functional redundancy.Item Evaluation of ATM Kinase Inhibitor KU-55933 as Potential Anti-Toxoplasma gondii Agent(Frontiers, 2019-02-13) Munera López, Jonathan; Ganuza, Agustina; Bogado, Silvina S.; Muñoz, Daniela; Ruiz, Diego M.; Sullivan, William J., Jr.; Vanagas, Laura; Angel, Sergio O.; Pharmacology and Toxicology, School of MedicineToxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate within host cells to produce acute infection during which the parasite disseminates to tissues and organs. Highly replicative cells are subject to Double Strand Breaks (DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol 3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork collapse, but this increase was not observed when co-administered with KU-55933. These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase (TgATM). The combination of KU-55933 and other DNA damaging agents such as methyl methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU) did not further inhibit tachyzoite replication when combined with KU-55933.Item Evaluation of topotecan and 10-hydroxycamptothecin on Toxoplasma gondii: Implications on baseline DNA damage and repair efficiency(Elsevier, 2023) Cristaldi, Constanza; Saldarriaga Cartagena, Ana M.; Ganuza, Agustina; Sullivan, William J., Jr.; Angel, Sergio O.; Vanagas, Laura; Pharmacology and Toxicology, School of MedicineToxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.Item A forward genetic approach to identifying novel calcium regulators in Toxoplasma Gondii(2017-07-25) LaFavers, Kaice Arminda; Arrizabalaga, Gustavo; Brustovetsky, Nickolay; Cummins, Theodore; Gilk, Stacey; Sullivan, William J., Jr.Toxoplasma gondii is an obligate intracellular eukaryotic pathogen that causes severe neurologic disease in immunocompromised adults and congenitally infected neonates. Events critical to the propagation of T. gondii, such as invasion and egress, are regulated by calcium-dependent signaling. In order to identify unique components of the parasite’s calcium signaling networks, members of the Arrizabalaga laboratory have used a forward genetics approach to isolate mutants with altered sensitivity to the calcium ionophore A23187. Exposing extracellular parasites to A23187 induces protein secretion, motility and cytoskeletal rearrangements and prolonged treatment causes exhaustion of factors required for invasion, which results in what is referred to as ionophore induced death (iiDeath). Mutants capable of surviving this treatment were isolated from a chemically mutagenized population. Whole genome sequencing of one such mutant, MBD2.1, identified a nonsense mutation in a protein of unknown function (TGGT1_069070, ToxoDBv7.2) Complementation of MBD 2.1 with a wild-type copy of TGGT1_069070 restored sensitivity to iiDeath treatment. Endogenous tagging of this locus revealed that the encoded protein is secreted from a unique parasite secretory organelle known as the dense granule into the parasitophorous vacuole, leading to its designation as TgGRA41. Complete knockout of TgGRA41 recapitulates the resistance to iiDeath observed in MBD2.1 but also exhibits a dramatic decrease in propagation in tissue culture not seen in the original mutant. The knockout shows defects in multiple steps of the lytic including compromised invasion efficiency and premature egress of parasites from host cells. Cytosolic calcium measurements of extracellular parasites show enhanced uptake of calcium in the knockout strain as compared to parental and complemented, suggesting that the loss of TgGra41 results in calcium dysregulation. Together, these results provide a novel insight into the role that the parasitophorous vacuole of T. gondii plays in calcium homeostasis and calcium-dependent signaling processes.