- Browse by Subject
Browsing by Subject "T-Lymphocyte subsets"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparative Analysis of Alternative Splicing Profiles in Th Cell Subsets Reveals Extensive Cell Type–Specific Effects Modulated by a Network of Transcription Factors and RNA-Binding Proteins(American Association of Immunologists, 2021-09-28) Mir, Quoseena; Lakshmipati, Deepak K.; Ulrich, Benjamin J.; Kaplan, Mark H.; Janga, Sarath Chandra; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringAlternative splicing (AS) plays an important role in the development of many cell types; however, its contribution to Th subsets has been clearly defined. In this study, we compare mice naive CD4+ Th cells with Th1, Th2, Th17, and T regulatory cells and observed that the majority of AS events were retained intron, followed by skipped-exon events, with at least 1200 genes across cell types affected by AS events. A significant fraction of the AS events, especially retained intron events from the 72-h time point, were no longer observed 2 wk postdifferentiation, suggesting a role for AS in early activation and differentiation via preferential expression of specific isoforms required during T cell activation, but not for differentiation or effector function. Examining the protein consequence of the exon-skipping events revealed an abundance of structural proteins encoding for intrinsically unstructured peptide regions, followed by transmembrane helices, β strands, and polypeptide turn motifs. Analyses of expression profiles of RNA-binding proteins (RBPs) and their cognate binding sites flanking the discovered AS events revealed an enrichment for specific RBP recognition sites in each of the Th subsets. Integration with publicly available chromatin immunoprecipitation sequencing datasets for transcription factors support a model wherein lineage-determining transcription factors impact the RBP profile within the differentiating cells, and this differential expression contributes to AS of the transcriptome via a cascade of cell type-specific posttranscriptional rewiring events.Item The development and in vivo function of T helper 9 cells(SpringerNature, 2015-05) Kaplan, Mark H.; Hufford, Matthew M.; Olson, Matthew R.; Department of Pediatrics, IU School of MedicineThe specialized cytokine secretion profiles of T helper (TH) cells are the basis for a focused and efficient immune response. On the 20th anniversary of the first descriptions of cytokine signals that act to differentiate interleukin-9 (IL-9)-secreting T cells, this review focuses on the extracellular signals and transcription factors that promote the development of what we now term TH9 cells, which are characterized by the production of this cytokine. We summarize our current understanding of the contribution of TH9 cells to both effective immunity and immunopathological disease and propose that TH9 cells could be targeted for the treatment of allergic and autoimmune disease.Item Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer(Springer Nature, 2023) Gulhati, Pat; Schalck, Aislyn; Jiang, Shan; Shang, Xiaoying; Wu, Chang-Jiun; Hou, Pingping; Hernandez Ruiz, Sharia; Solis Soto, Luisa; Parra, Edwin; Ying, Haoqiang; Han, Jincheng; Dey, Prasenjit; Li, Jun; Deng, Pingna; Sei, Emi; Maeda, Dean Y.; Zebala, John A.; Spring, Denise J.; Kim, Michael; Wang, Huamin; Maitra, Anirban; Moore, Dirk; Clise-Dwyer, Karen; Wang, Y. Alan; Navin, Nicholas E.; DePinho, Ronald A.; Medicine, School of MedicinePancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.Item Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice(Public Library of Science, 2018-04-06) Carrasco, Sebastian E.; Hu, Sishun; Imai, Denise M.; Kumar, Ramesh; Sandusky, George E.; Yang, X. Frank; Derbigny, Wilbert A.; Microbiology and Immunology, School of MedicineChlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.