- Browse by Subject
Browsing by Subject "Spatial abilities"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Correlating Spatial Ability With Anatomy Assessment Performance: A Meta-Analysis(Wiley, 2021) Roach, Victoria A.; Mi, Misa; Mussell, Jason; Van Nuland, Sonya E.; Lufler, Rebecca S.; DeVeau, Kathryn M.; Dunham, Stacey M.; Husmann, Polly; Herriott, Hannah L.; Edwards, Danielle N.; Doubleday, Alison F.; Wilson, Brittany M.; Wilson, Adam B.; Anatomy, Cell Biology and Physiology, School of MedicineInterest in spatial ability has grown over the past few decades following the emergence of correlational evidence associating spatial aptitude with educational performance in the fields of science, technology, engineering, and mathematics. The research field at large and the anatomy education literature on this topic are mixed. In an attempt to generate consensus, a meta-analysis was performed to objectively summarize the effects of spatial ability on anatomy assessment performance across multiple studies and populations. Relevant studies published within the past 50 years (1969-2019) were retrieved from eight databases. Study eligibility screening was followed by a full-text review and data extraction. Use of the Mental Rotations Test (MRT) was required for study inclusion. Out of 2,450 screened records, 15 studies were meta-analyzed. Seventy-three percent of studies (11 of 15) were from the United States and Canada, and the majority (9 of 15) studied professional students. Across 15 studies and 1,245 participants, spatial ability was weakly associated with anatomy performance (rpooled = 0.240; CI at 95% = 0.09, 0.38; P = 0.002). Performance on spatial and relationship-based assessments (i.e., practical assessments and drawing tasks) was correlated with spatial ability, while performance on assessments utilizing non-spatial multiple-choice items was not correlated with spatial ability. A significant sex difference was also observed, wherein males outperformed females on spatial ability tasks. Given the role of spatial reasoning in learning anatomy, educators are encouraged to consider curriculum delivery modifications and a comprehensive assessment strategy so as not to disadvantage individuals with low spatial ability.Item Visual-spatial sequence learning and memory in trained musicians(Sage, 2017-01) Anaya, Esperanza M.; Pisoni, David B.; Kronenberger, William G.; Psychiatry, School of MedicinePrevious research has shown that musicians have enhanced visual-spatial abilities and sensorymotor skills. As a result of their long-term musical training and their experience-dependent activities, musicians may learn to associate sensory information with fine motor movements. Playing a musical instrument requires musicians to rapidly translate musical symbols into specific sensory-motor actions while also simultaneously monitoring the auditory signals produced by their instrument. In this study, we assessed the visual-spatial sequence learning and memory abilities of long-term musicians. We recruited 24 highly trained musicians and 24 nonmusicians, individuals with little or no musical training experience. Participants completed a visual-spatial sequence learning task as well as receptive vocabulary, nonverbal reasoning, and short-term memory tasks. Results revealed that musicians have enhanced visual-spatial sequence learning abilities relative to nonmusicians. Musicians also performed better than nonmusicians on the vocabulary and nonverbal reasoning measures. Additional analyses revealed that the large group difference observed on the visualspatial sequencing task between musicians and nonmusicians remained even after controlling for vocabulary, nonverbal reasoning, and short-term memory abilities. Musicians' improved visualspatial sequence learning may stem from basic underlying differences in visual-spatial and sensorymotor skills resulting from long-term experience and activities associated with playing a musical instrument.