- Browse by Subject
Browsing by Subject "Skeletal muscle"
Now showing 1 - 10 of 61
Results Per Page
Sort Options
Item A Two-Stage Approach Integrating Provisional Biomaterial-Mediated Stabilization Followed by a Definitive Treatment for Managing Volumetric Muscle Loss Injuries(MDPI, 2024-06-06) Clark, Andrew R.; Kulwatno, Jonathan; Kanovka, Sergey S.; Klarmann, George J.; Hernandez, Claudia E.; Natoli, Roman M.; McKinley, Todd O.; Potter, Benjamin K.; Dearth, Christopher L.; Goldman, Stephen M.; Orthopaedic Surgery, School of MedicineTreatment of volumetric muscle loss (VML) faces challenges due to its unique pathobiology and lower priority in severe musculoskeletal injury management. Consequently, a need exists for multi-stage VML treatment strategies to accommodate delayed interventions owing to comorbidity management or prolonged casualty care in combat settings. To this end, polyvinyl alcohol (PVA) was used at concentrations of 5%, 7.5%, and 10% to generate provisional muscle void fillers (MVFs) of varying stiffness values (1.125 kPa, 3.700 kPa, and 7.699 kPa) to stabilize VML injuries as part of a two-stage approach. These were implanted into a rat model for a duration of 4 weeks, then explanted and either left untreated (control) or treated through minced muscle grafting (MMG). Additional benchmarks included acute MMG and unrepaired groups. At the MVF explant, the 7.5% PVA group exhibited superior neuromuscular function compared to the 5% and 10% PVA groups, the least fibrosis, and the largest median myofiber size among all groups at the 12-week endpoint. Despite the 7.5% PVA’s superiority amongst the two-stage treatment groups, neuromuscular function was neither improved nor impaired relative to acute treatment benchmarks. This suggests that the future success of a two-stage VML treatment strategy will necessitate a more effective definitive intervention.Item The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells(American Society for Biochemistry and Molecular Biology, 2017-11-17) Tunduguru, Ragadeepthi; Zhang, Jing; Aslamy, Arianne; Salunkhe, Vishal A.; Brozinick, Joseph T.; Elmendorf, Jeffrey S.; Thurmond, Debbie C.; Biochemistry and Molecular Biology, School of MedicineDefects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.Item Activin A Causes Muscle Atrophy through MEF2C-Dependent Impaired Myogenesis(MDPI, 2022-03-25) Loumaye, Audrey; Lause, Pascale; Zhong, Xiaoling; Zimmers, Teresa A.; Bindels, Laure B.; Thissen, Jean-Paul; Surgery, School of MedicineActivin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-β/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-β/slow. This decrease in MEF2C was involved in the decline of MyHC-β/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-β/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-β/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.Item ACVR2B antagonism as a countermeasure to multi‐organ perturbations in metastatic colorectal cancer cachexia(Wiley, 2020-12) Huot, Joshua R.; Pin, Fabrizio; Narasimhan, Ashok; Novinger, Leah J.; Keith, Austin S.; Zimmers, Teresa A.; Willis, Monte S.; Bonetto, Andrea; Surgery, School of MedicineBackground: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. Methods: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. Results: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. Conclusions: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.Item Adenine-induced chronic kidney disease induces a similar skeletal phenotype in male and female C57BL/6 mice with more severe deficits in cortical bone properties of male mice(PLOS, 2021-04-23) Metzger, Corinne E.; Swallow, Elizabeth A.; Stacy, Alexander J.; Allen, Matthew R.; Anatomy and Cell Biology, School of MedicineChronic kidney disease (CKD) causes bone loss, particularly in cortical bone, through formation of cortical pores which lead to skeletal fragility. Animal models of CKD have shown variability in the skeletal response to CKD between males and females suggesting sex may play a role in this variation. Our aim was to compare the impact of adenine-induced CKD on cortical parameters in skeletally mature male and female C57Bl/6 mice. After 10-weeks of adenine-induced CKD, both male and female adenine mice had high serum parathyroid hormone (PTH), high bone turnover, and cortical porosity compared to non-CKD controls. Both sexes had lower cortical thickness, but only male mice had lower cortical bone area. CKD imparted greater deficits in mechanical properties of male mice compared to female mice. These data demonstrate that both male and female mice develop high PTH/high bone turnover in response to adenine-induced CKD and that cortical bone phenotypes are slightly more severe in males, particularly in mechanical properties deficits.Item Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis(Elsevier, 2021) Tidball, James G.; Flores, Ivan; Welc, Steven S.; Wehling-Henricks, Michelle; Ochi, Eisuke; Anatomy, Cell Biology and Physiology, School of MedicineSkeletal muscle regeneration that follows acute injury is strongly influenced by interactions with immune cells that invade and proliferate in the damaged tissue. Discoveries over the past 20 years have identified many of the key mechanisms through which myeloid cells, especially macrophages, regulate muscle regeneration. In addition, lymphoid cells that include CD8+ T-cells and regulatory T-cells also significantly affect the course of muscle regeneration. During aging, the regenerative capacity of skeletal muscle declines, which can contribute to progressive loss of muscle mass and function. Those age-related reductions in muscle regeneration are accompanied by systemic, age-related changes in the immune system, that affect many of the myeloid and lymphoid cell populations that can influence muscle regeneration. In this review, we present recent discoveries that indicate that aging of the immune system contributes to the diminished regenerative capacity of aging muscle. Intrinsic, age-related changes in immune cells modify their expression of factors that affect the function of a population of muscle stem cells, called satellite cells, that are necessary for normal muscle regeneration. For example, age-related reductions in the expression of growth differentiation factor-3 (GDF3) or CXCL10 by macrophages negatively affect adult myogenesis, by disrupting regulatory interactions between macrophages and satellite cells. Those changes contribute to a reduction in the numbers and myogenic capacity of satellite cells in old muscle, which reduces their ability to restore damaged muscle. In addition, aging produces changes in the expression of molecules that regulate the inflammatory response to injured muscle, which also contributes to age-related defects in muscle regeneration. For example, age-related increases in the production of osteopontin by macrophages disrupts the normal inflammatory response to muscle injury, resulting in regenerative defects. These nascent findings represent the beginning of a newly-developing field of investigation into mechanisms through which aging of the immune system affects muscle regeneration.Item Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model(Wiley, 2021) Wang, Ruizhong; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Prasad, Mayuri S.; Jacobsen, Max H.; Ovalle, Gabriela; Maguire, Calli; Sandusky, George; Trivedi, Trupti; Mohammad, Khalid S.; Guise, Theresa; Penthala, Narsimha R.; Crooks, Peter A.; Liu, Jianguo; Zimmers, Teresa; Nakshatri, Harikrishna; Surgery, School of MedicineBackground: Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. Methods: We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. Results: Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1β, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. Conclusions: These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.Item Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis(BMC, 2021-07-10) Andonian, Brian J.; Johannemann, Andrew; Hubal, Monica J.; Pober, David M.; Koss, Alec; Kraus, William E.; Bartlett, David B.; Huffman, Kim M.; Exercise & Kinesiology, School of Health and Human SciencesBackground: Exercise training, including high-intensity interval training (HIIT), improves rheumatoid arthritis (RA) inflammatory disease activity via unclear mechanisms. Because exercise requires skeletal muscle, skeletal muscle molecular pathways may contribute. The purpose of this study was to identify connections between skeletal muscle molecular pathways, RA disease activity, and RA disease activity improvements following HIIT. Methods: RA disease activity assessments and vastus lateralis skeletal muscle biopsies were performed in two separate cohorts of persons with established, seropositive, and/or erosive RA. Body composition and objective physical activity assessments were also performed in both the cross-sectional cohort and the longitudinal group before and after 10 weeks of HIIT. Baseline clinical assessments and muscle RNA gene expression were correlated with RA disease activity score in 28 joints (DAS-28) and DAS-28 improvements following HIIT. Skeletal muscle gene expression changes with HIIT were evaluated using analysis of covariance and biological pathway analysis. Results: RA inflammatory disease activity was associated with greater amounts of intramuscular adiposity and less vigorous aerobic exercise (both p < 0.05). HIIT-induced disease activity improvements were greatest in those with an older age, elevated erythrocyte sedimentation rate, low cardiorespiratory fitness, and a skeletal muscle molecular profile indicative of altered metabolic pathways (p < 0.05 for all). Specifically, disease activity improvements were linked to baseline expression of RA skeletal muscle genes with cellular functions to (1) increase amino acid catabolism and interconversion (GLDC, BCKDHB, AASS, PYCR, RPL15), (2) increase glycolytic lactate production (AGL, PDK2, LDHB, HIF1A), and (3) reduce oxidative metabolism via altered beta-oxidation (PXMP2, ACSS2), TCA cycle flux (OGDH, SUCLA2, MDH1B), and electron transport chain complex I function (NDUFV3). The muscle mitochondrial glycine cleavage system (GCS) was identified as critically involved in RA disease activity improvements given upregulation of multiple GCS genes at baseline, while GLDC was significantly downregulated following HIIT. Conclusion: In the absence of physical activity, RA inflammatory disease activity is associated with transcriptional remodeling of skeletal muscle metabolism. Following exercise training, the greatest improvements in disease activity occur in older, more inflamed, and less fit persons with RA. These exercise training-induced immunomodulatory changes may occur via reprogramming muscle bioenergetic and amino acid/protein homeostatic pathways.Item An early, reversible cholesterolgenic etiology of diet-induced insulin resistance(Elsevier, 2023) Covert, Jacob D.; Grice, Brian A.; Thornburg, Matthew G.; Kaur, Manpreet; Ryan, Andrew P.; Tackett, Lixuan; Bhamidipati, Theja; Stull, Natalie D.; Kim, Teayoun; Habegger, Kirk M.; McClain, Donald A.; Brozinick, Joseph T.; Elmendorf, Jeffrey S.; Anatomy, Cell Biology and Physiology, School of MedicineObjective: A buildup of skeletal muscle plasma membrane (PM) cholesterol content in mice occurs within 1 week of a Western-style high-fat diet and causes insulin resistance. The mechanism driving this cholesterol accumulation and insulin resistance is not known. Promising cell data implicate that the hexosamine biosynthesis pathway (HBP) triggers a cholesterolgenic response via increasing the transcriptional activity of Sp1. In this study we aimed to determine whether increased HBP/Sp1 activity represented a preventable cause of insulin resistance. Methods: C57BL/6NJ mice were fed either a low-fat (LF, 10% kcal) or high-fat (HF, 45% kcal) diet for 1 week. During this 1-week diet the mice were treated daily with either saline or mithramycin-A (MTM), a specific Sp1/DNA-binding inhibitor. A series of metabolic and tissue analyses were then performed on these mice, as well as on mice with targeted skeletal muscle overexpression of the rate-limiting HBP enzyme glutamine-fructose-6-phosphate-amidotransferase (GFAT) that were maintained on a regular chow diet. Results: Saline-treated mice fed this HF diet for 1 week did not have an increase in adiposity, lean mass, or body mass while displaying early insulin resistance. Consistent with an HBP/Sp1 cholesterolgenic response, Sp1 displayed increased O-GlcNAcylation and binding to the HMGCR promoter that increased HMGCR expression in skeletal muscle from saline-treated HF-fed mice. Skeletal muscle from these saline-treated HF-fed mice also showed a resultant elevation of PM cholesterol with an accompanying loss of cortical filamentous actin (F-actin) that is essential for insulin-stimulated glucose transport. Treating these mice daily with MTM during the 1-week HF diet fully prevented the diet-induced Sp1 cholesterolgenic response, loss of cortical F-actin, and development of insulin resistance. Similarly, increases in HMGCR expression and cholesterol were measured in muscle from GFAT transgenic mice compared to age- and weight-match wildtype littermate control mice. In the GFAT Tg mice we found that these increases were alleviated by MTM. Conclusions: These data identify increased HBP/Sp1 activity as an early mechanism of diet-induced insulin resistance. Therapies targeting this mechanism may decelerate T2D development.Item Anticachectic regulator analysis reveals Perp-dependent antitumorigenic properties of 3-methyladenine in pancreatic cancer(American Society for Clinical Investigation, 2022-01-25) Dasgupta, Aneesha; Arneson-Wissink, Paige C.; Schmitt, Rebecca E.; Cho, Dong Seong; Ducharme, Alexandra M.; Hogenson, Tara L.; Krueger, Eugene W.; Bamlet, William R.; Zhang, Lizhi; Razidlo, Gina L.; Fernandez-Zapico, Martin E.; Doles, Jason D.; Anatomy, Cell Biology and Physiology, School of MedicineApproximately 80% of pancreatic cancer patients suffer from cachexia, and one-third die due to cachexia-related complications such as respiratory failure and cardiac arrest. Although there has been considerable research into cachexia mechanisms and interventions, there are, to date, no FDA-approved therapies. A major contributing factor for the lack of therapy options could be the failure of animal models to accurately recapitulate the human condition. In this study, we generated an aged model of pancreatic cancer cachexia to compare cachexia progression in young versus aged tumor-bearing mice. Comparative skeletal muscle transcriptome analyses identified 3-methyladenine (3-MA) as a candidate antiwasting compound. In vitro analyses confirmed antiwasting capacity, while in vivo analysis revealed potent antitumor effects. Transcriptome analyses of 3-MA-treated tumor cells implicated Perp as a 3-MA target gene. We subsequently (a) observed significantly higher expression of Perp in cancer cell lines compared with control cells, (b) noted a survival disadvantage associated with elevated Perp, and (c) found that 3-MA-associated Perp reduction inhibited tumor cell growth. Finally, we have provided in vivo evidence that survival benefits conferred by 3-MA administration are independent of its effect on tumor progression. Taken together, we report a mechanism linking 3-MA to Perp inhibition, and we further implicate Perp as a tumor-promoting factor in pancreatic cancer.