- Browse by Subject
Browsing by Subject "Selected lines"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Drinking History on Reinforced and Extinction Responding in Crossed High Alcohol-Preferring Mice(2022-12) Winkler, Garrett; Grahame, Nicholas; Lapish, Christopher; Logrip, MarianTolerance is a diagnostic criterion for alcohol use disorder (AUD) and dependence and is often measured metabolically or behaviorally by comparing blood ethanol concentrations (BEC) or locomotor performance to an ethanol (EtOH) challenge before and after a drinking history, respectively. To explore another aspect of chronic behavioral tolerance in a family history positive (FH+) model of AUD, crossed High Alcohol Preferring (cHAP) mice were allowed to respond instrumentally for an EtOH reinforcer after either a five-week history of continuous home cage two-bottle choice (2BC) drinking or a concurrent five-week water-drinking period. Additionally, some of these animals were placed back into the operant box after home cage drinking histories to respond in extinction, allowing for the quantification of alcohol-motivated seeking alone in the absence of EtOH taking and its intoxicating effects. The results demonstrate that an alcohol history does not lead to a subsequent increase in active lever responding or inactive lever responding when compared to water-drinking controls. However, female cHAP mice with an EtOH-drinking history respond more on the inactive lever in extinction compared to water controls, suggesting that home cage EtOH history potentiates variation in responding in extinction. Overall, female mice responded more on the active lever and drank more alcohol in the reinforced condition, but again, there was not an effect of drinking history on this sex-specific effect. Together these results suggest that while female cHAPs, regardless of drinking history, are more motivated to work to drink EtOH, reinforced and non-reinforced instrumental responding are not reliable readouts for tolerance in cHAP mice compared to other endpoints such as drinking in the dark (DID) assays.Item Modeling Aversion Resistant Alcohol Intake in Indiana Alcohol-Preferring (P) Rats(MDPI, 2022-08-05) Katner, Simon N.; Sentir, Alena M.; Steagall, Kevin B.; Ding, Zheng-Ming; Wetherill, Leah; Hopf, Frederic W.; Engleman, Eric A.; Psychiatry, School of MedicineWith the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes “inflexible” after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.