- Browse by Subject
Browsing by Subject "Regenerative medicine"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Exploring Chondrocyte Integrin Regulation of Growth Factor IGF-I Expression from a Transient pAAV Vector(2013-08-20) Ratley, Samantha Kay; Trippel, Stephen B.; Lin, Chien-Chi; Stocum, David L.Insulin-like Growth Factor I (IGF-I) is a growth factor that stimulates both mitogenic and anabolic responses in articular chondrocytes. While it has been shown that exogenous IGF-I can regulate chondrocyte integrins, little is known regarding regulatory effects of IGF-I produced from a transiently expressed plasmid based adeno-associated virus (pAAV) vector. Because chondrocytes are using cellular machinery to overexpress IGF-I, it is of interest to see whether or not pAAV IGF-I will significantly upregulate or downregulate chondrocyte integrins. Additionally, it is of interest to know whether chondrocyte adhesion through integrins will have any regulatory effects on the production of IGF-I from the transgene. Therefore, this study will ascertain if pAAV IGF-I will have similar effects that exogenous IGF-I has on integrin regulation and if integrin silencing mechanisms will affect the production of IGF-I from the transgene. To test these hypotheses, adult articular chondrocytes were doubly transfected with the pAAV vector for IGF-I and short interference ribonucleic acid (siRNA) for integrins beta 1 and alpha V. Gene products were monitored at the transcriptional levels using quantitative real time polymerase chain reactions (qPCR) and IGF-I protein production was monitored at the translational level using enzyme linked immunoabsorbant assays (ELISAs). Adult articular chondrocytes doubly transfected were encapsulated in a three dimensional hydrogel system to simulate an in vivo environment. Samples were collected for analysis at days 2, 4, and 6 post encapsulation. Results show that IGF-I treatment with the pAAV vector does not cause significant changes in the transcriptional regulation of the beta 1 integrin in a three dimensional hydrogel system. The pAAV IGF-I vector did not cause significant regulatory changes on integrin alpha V at any time point during the experiment. Additionally, by knocking down the expression levels of integrins by using siRNA, it was shown that integrin knockdown does not have a significant regulatory effect on transcriptional or translational expression levels of IGF-I from the pAAV vector.Item Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities(Elsevier, 2020) Johnstone, Brian H.; Miller, Hannah M.; Beck, Madelyn R.; Gu, Dongsheng; Thirumala, Sreedhar; LaFontaine, Michael; Brandacher, Gerald; Woods, Erik J.; Pediatrics, School of MedicineBackground: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. Methods: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. Results: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. Discussion: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.Item Oxygenation Profiles of Human Blood, Cell Culture Medium, and Water for Perfusion of 3D-Bioprinted Tissues using the FABRICA Bioreactor Platform(Nature Research, 2020-04-29) Chen, Angela M.; Lashmet, Matthew; Isidan, Abdulkadir; Sterner, Jane L.; Walsh, Julia; Koehler, Cutter; Li, Ping; Ekser, Burcin; Smith, Lester; Surgery, School of MedicinePersistent and saturated oxygen distribution from perfusion media (i.e., blood, or cell culture media) to cells within cell-dense, metabolically-active biofabricated tissues is required to keep them viable. Improper or poor oxygen supply to cells within the tissue bulk severely limits the tissue culturing potential of many bioreactors. We added an oxygenator module to our modular FABRICA bioreactor in order to provide stable oxygenation to biofabricated tissues during culture. In this proof of concept study of an oxygenated and perfused bioreactor, we characterized the oxygenation of water, cell culture medium, and human blood in the FABRICA as functions of augmenting vacuum (air inlet) pressure, perfusion (volumetric flow) rate, and tubing/oxygenator components. The mean oxygen levels for water and cell culture media were 27.7 ± 2.1% and 27.6 ± 4.1%, respectively. The mean oxygen level for human blood was 197.0 ± 90.0 mmHg, with near-physiologic levels achieved with low-permeability PharMed tubing alone (128.0 ± 14.0 mmHg). Hematologic values pre- and post-oxygenation, respectively were (median ± IQR): Red blood cell: 6.0 ± 0.5 (106/μL) and 6.5 ± 0.4 (106/μL); Hemoglobin: 17.5 ± 1.2 g/dL and 19.2 ± 3.0 g/dL; and Hematocrit: 56.7 ± 2.4% and 61.4 ± 7.5%. The relative stability of the hematologic parameters indicates that blood function and thus blood cell integrity were maintained throughout oxygenation. Already a versatile research tool, the now oxygenated FABRICA provides easy-to-implement, in vivo-like perfusion and stable oxygenation culture conditions in vitro semi-independently of one another, which means the bioreactor has the potential to serve as a platform for investigating the behavior of 3D tissue models (regardless of biofabrication method), performing drug toxicity-testing, and testing pharmaceutical efficacy/safety.Item Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine(Elsevier, 2024-11-04) Sankova, Maria V.; Beeraka, Narasimha M.; Oganesyan, Marine V.; Rizaeva, Negoriya A.; Sankov, Aleksey V.; Shelestova, Olga S.; Bulygin, Kirill V.; Vikram, Hemanth; Barinov, A. N.; Khalimova, A. K.; Reddy, Y. Padmanabha; Basappa, Basappa; Nikolenko, Vladimir N.; Pediatrics, School of MedicineBackground: In recent years, many countries have actively implemented programs and strategies to promote physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent, accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures. Objective: To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop strategies for personalized prevention. Methods: This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI, Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLeninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed. Results: The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared. Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing Achilles injuries were also discussed. Discussion: The combination of several established factors significantly increases the risk of Achilles tendon rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic disorders are essential components of a comprehensive prevention plan. Conclusion: Early identification of Achilles tendon risk factors allows for the timely development of effective personalized prevention strategies. These measures can contribute significantly to public health preservation by reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued research and clinical advancements in treatment methods will further enhance the ability to prevent and manage Achilles tendon injuries. The translational potential of this article: This study identifies key modifiable and non-modifiable risk factors for Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise, and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and rehabilitation, ultimately reducing Achilles injuries and enhancing public health.Item Recommendations for nomenclature and definition of cell products intended for human cardiovascular use(Oxford University Press, 2022) Taylor, Doris A.; Chacon-Alberty, Lourdes; Sampaio, Luiz C.; Gonzalez del Hierro, Mariana; Perin, Emerson C.; Mesquita, Fernanda C.P.; Henry, Timothy D.; Traverse, Jay H.; Pepine, Carl J.; Hare, Joshua M.; Murphy, Michael P.; Yang, Phillip C.; March, Keith L.; Vojvodic, Rachel W.; Ebert, Ray F.; Bolli, Roberto; Cardiovascular Cell Therapy Research Network (CCTRN); Surgery, School of MedicineExogenous cell-based therapy has emerged as a promising new strategy to facilitate repair of hearts damaged by acute or chronic injury. However, the field of cell-based therapy is handicapped by the lack of standardized definitions and terminology, making comparisons across studies challenging. Even the term 'stem cell therapy' is misleading because only a small percentage of cells derived from adult bone marrow, peripheral blood, or adipose tissue meets the accepted haematopoietic or developmental definition of stem cells. Furthermore, cells (stem or otherwise) are dynamic biological products, meaning that their surface-marker expression, phenotypic and functional characteristics, and the products they secrete in response to their microenvironment can change. It is also important to point out that most surface markers are seldom specific for a cell type. In this article, we discuss the lack of consistency in the descriptive terminology used in cell-based therapies and offer guidelines aimed at standardizing nomenclature and definitions to improve communication among investigators and the general public.Item Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs(Springer Nature, 2021-02-01) Puls, Theodore J.; Fisher, Carla S.; Cox, Abigail; Plantenga, Jeannie M.; McBride, Emma L.; Anderson, Jennifer L.; Goergen, Craig J.; Bible, Melissa; Moller, Tracy; Voytik‑Harbin, Sherry L.; Surgery, School of MedicineComplete removal of cancerous tissue and preservation of breast cosmesis with a single breast conserving surgery (BCS) is essential for surgeons. New and better options would allow them to more consistently achieve this goal and expand the number of women that receive this preferred therapy, while minimizing the need for re-excision and revision procedures or more aggressive surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown to induce a regenerative healing response, characterized by rapid cellularization, vascularization, and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. Unlike conventional biomaterials, no foreign body response or inflammatory-mediated “active” biodegradation was observed. The collagen filler also did not compromise simulated surgical re-excision, radiography, or ultrasonography procedures, features that are important for clinical translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response were largely similar to non-irradiated conditions; however, as expected, healing was modestly slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, and regenerates complex soft tissues in the absence of inflammation. It has significant translational potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and reconstruction needs.Item A systemically-delivered stem cell therapy for dry age related macular degeneration(2017-06-27) Pay, Samantha Louise; Boulton, Michael E.; Grant, Maria B.; Morral, Nuria; Kota, Janaiah; Broxmeyer, Hal E.Dry age-related macular degeneration (AMD) is a progressive neurodegenerative disorder characterized by geographical atrophy of the retinal pigment epithelium (RPE), causing irreversible central vision loss. Systemically-delivered bone marrow-derived cells (BMDCs), programmed to RPE-like cells via expression of human RPE65, regenerate damaged RPE and preserve vision in murine models of retinal degeneration. RPE65 rapidly activates adenylate cyclase (AC), which then activates endogenous Rpe65 and RPE-associated marker Cralbp. Previous studies expressed RPE65 from an integrating lentiviral vector (ILV), which is an unnecessary safety risk due to the potential for insertional mutagenesis, as long- term expression of RPE65 is not required for BMDC programming. Here, we developed a 3rd generation integrase-defective lentiviral vector (IDLV) for programming both murine and human BMDCs to RPE-like cells, reducing insertional mutagenesis risk and expanding the protocol to include human cells. We enhanced IDLV3-RPE65 infection of murine and human BMDCs by preloading concentrated vector on RetroNectin at MOI 50, and infecting with low-speed centrifugation, increasing RPE65 mRNA levels from ~12-fold to ~25-fold (p<0.05). IDLV3-RPE65 infection initiates expression of endogenous Rpe65 mRNA expression in murine BMDC and Cralbp/CRALBP mRNA in both murine and human BMDCs, indicating programming to RPE-like cells. Inhibiting AC in RPE65infected BMDCs abrogated expression of the endogenous genes, confirming the role of AC activation in programming. Critically, IDLV3-RPE65-infected murine BMDCs are recruited to and incorporate into to the RPE layer, and preserve vision in murine models of retinal degeneration. We conclude that BMDCs programmed with IDLV3-RPE65 successfully prevent retinal degeneration progression and are appropriate for testing in human cells, with a view to move into human clinical trial for the treatment of dry AMD. This approach significantly increases the safety of the therapy and is, to the best of our knowledge, the first application of a single IDLV in the generation of therapeutic cells from adult stem cells.Item Therapeutic Applications of Halloysite(MDPI, 2022) Mobaraki, Mohammadmahdi; Karnik, Sonali; Li, Yue; Mills, David K.; Orthopaedic Surgery, School of MedicineIn recent years, nanomaterials have attracted significant research interest for applications in biomedicine. Many kinds of engineered nanomaterials, such as lipid nanoparticles, polymeric nanoparticles, porous nanomaterials, silica, and clay nanoparticles, have been investigated for use in drug delivery systems, regenerative medicine, and scaffolds for tissue engineering. Some of the most attractive nanoparticles for biomedical applications are nanoclays. According to their mineralogical composition, approximately 30 different nanoclays exist, and the more commonly used clays are bentonite, halloysite, kaolinite, laponite, and montmorillonite. For millennia, clay minerals have been extensively investigated for use in antidiarrhea solutions, anti-inflammatory agents, blood purification, reducing infections, and healing of stomach ulcers. This widespread use is due to their high porosity, surface properties, large surface area, excellent biocompatibility, the potential for sustained drug release, thermal and chemical stability. We begin this review by discussing the major nanoclay types and their application in biomedicine, focusing on current research areas for halloysite in biomedicine. Finally, recent trends and future directions in HNT research for biomedical application are explored.