- Browse by Subject
Browsing by Subject "Receptors, Androgen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Hyperandrogenism induces a proinflammatory TNFα response to glucose ingestion in a receptor-dependent fashion(The Endocrine Society, 2014-05) González, Frank; Sia, Chang Ling; Bearson, Dawn M.; Blair, Hilary E.; Department of Obstetrics and Gynecology, IU School of MedicineCONTEXT: Hyperandrogenism and inflammation are related in polycystic ovary syndrome (PCOS). Hyperandrogenemia can induce inflammation in reproductive-age women, but the mechanism for this phenomenon is unclear. OBJECTIVE: We examined the in vivo and in vitro effects of hyperandrogenism on mononuclear cell (MNC)-derived androgen receptor (AR) status and TNFα release. DESIGN: This study combined a randomized, controlled, double-blind protocol with laboratory-based cell culture experiments. SETTING: This work was performed in an academic medical center. PARTICIPANTS: Lean, healthy, reproductive-age women were treated with 130 mg of dehydroepiandrosterone (DHEA) or placebo (n = 8 subjects each) for 5 days and also provided untreated fasting blood samples (n = 12 subjects) for cell culture experiments. MAIN OUTCOME MEASURES: AR mRNA content and TNFα release were measured before and after DHEA administration in the fasting state and 2 hours after glucose ingestion. TNFα release in the fasting state was also measured in cultured MNCs exposed to androgens with or without flutamide preincubation. RESULTS: At baseline, subjects receiving DHEA or placebo exhibited no significant difference in androgens and TNFα release from MNCs before and after glucose ingestion. Compared with placebo, DHEA administration raised levels of T, androstenedione, and DHEA sulfate, and increased MNC-derived AR mRNA content and TNFα release in the fasting state and in response to glucose ingestion. Compared with MNC exposure to baseline concentrations of DHEA (175 ng/dL) or T (50 ng/dL), the absolute change in TNFα release increased after exposure to T concentrations of 125 and 250 ng/dL and a DHEA concentration of 1750 ng/dL. Preincubation with flutamide reduced the TNFα response by ≥ 60% across all T concentrations. CONCLUSION: Androgen excess in vivo and in vitro comparable to what is present in PCOS increases TNFα release from MNCs of lean healthy reproductive-age women in a receptor-dependent fashion. Hyperandrogenemia activates and sensitizes MNCs to glucose in this population.Item Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer(American Society of Clinical Oncology, 2017-10-01) Antonarakis, Emmanuel S.; Tagawa, Scott T.; Galleti, Giuseppe; Worroll, Daniel; Ballman, Karla; Vanhuyse, Marie; Sonpavde, Guru; North, Scott; Albany, Costantine; Tsao, Che-Kai; Stewart, John; Zaher, Atef; Szatrowski, Ted; Zhou, Wei; Gjyrezi, Ada; Tasaki, Shinsuke; Portella, Luigi; Bai, Yang; Lannin, Timothy B.; Suri, Shalu; Gruber, Conor N.; Pratt, Erica D.; Kirby, Brian J.; Eisenberger, Mario A.; Nanus, David M.; Saad, Fred; Giannakakou, Paraskevi; TAXYNERGY Investigators; Medicine, School of MedicinePurpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes.Item Synthesis and androgen receptor binding of novel derivatives of dihydrotestosterone(1990) Stobaugh, Mark Edward