- Browse by Subject
Browsing by Subject "RNA sequencing"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma – characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing(Wiley, 2017-12) Shah, Fenil; Goossens, Emery; Atallah, Nadia M.; Grimard, Michelle; Kelley, Mark R.; Fishel, Melissa L.; Department of Pediatrics, School of MedicineApurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.Item Chemically-defined generation of human hemogenic endothelium and definitive hematopoietic progenitor cells(Elsevier, 2022) Chang, Yun; Syahirah, Ramizah; Oprescu, Stephanie N.; Wang, Xuepeng; Jung, Juhyung; Cooper, Scott H.; Torregrosa-Allen, Sandra; Elzey, Bennett D.; Hsu, Alan Y.; Randolph, Lauren N.; Sun, Yufei; Kuang, Shihuan; Broxmeyer, Hal E.; Deng, Qing; Lian, Xiaojun; Bao, Xiaoping; Microbiology and Immunology, School of MedicineHuman hematopoietic stem cells (HSCs), which arise from aorta-gonad-mesonephros (AGM), are widely used to treat blood diseases and cancers. However, a technique for their robust generation in vitro is still missing. Here we show temporal manipulation of Wnt signaling is sufficient and essential to induce AGM-like hematopoiesis from human pluripotent stem cells. TGFβ inhibition at the stage of aorta-like SOX17+CD235a- hemogenic endothelium yielded AGM-like hematopoietic progenitors, which closely resembled primary cord blood HSCs at the transcriptional level and contained diverse lineage-primed progenitor populations via single cell RNA-sequencing analysis. Notably, the resulting definitive cells presented lymphoid and myeloid potential in vitro; and could home to a definitive hematopoietic site in zebrafish and rescue bloodless zebrafish after transplantation. Engraftment and multilineage repopulating activities were also observed in mouse recipients. Together, our work provided a chemically-defined and feeder-free culture platform for scalable generation of AGM-like hematopoietic progenitor cells, leading to enhanced production of functional blood and immune cells for various therapeutic applications.Item Dimension-agnostic and granularity-based spatially variable gene identification using BSP(Springer Nature, 2023-11-14) Wang, Juexin; Li, Jinpu; Kramer, Skyler T.; Su, Li; Chang, Yuzhou; Xu, Chunhui; Eadon, Michael T.; Kiryluk, Krzysztof; Ma, Qin; Xu, Dong; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringIdentifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.Item Electroacupuncture Induces Bilateral S1 and ACC Epigenetic Regulation of Genes in a Mouse Model of Neuropathic Pain(MDPI, 2023-03-27) Ping, Xingjie; Xie, Junkai; Yuan, Chongli; Jin, Xiaoming; Anatomy, Cell Biology and Physiology, School of MedicineClinical and animal studies have shown that acupuncture may benefit controlling neuropathic pain. However, the underlying molecular mechanisms are poorly understood. In a well-established mouse unilateral tibial nerve injury (TNI) model, we confirmed the efficacy of electroacupuncture (EA) in reducing mechanical allodynia and measured methylation and hydroxy-methylation levels in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), two cortical regions critically involved in pain processing. TNI resulted in increased DNA methylation of both the contra- and ipsilateral S1, while EA only reduced contralateral S1 methylation. RNA sequencing of the S1 and ACC identified differentially expressed genes related to energy metabolism, inflammation, synapse function, and neural plasticity and repair. One week of daily EA decreased or increased the majority of up- or downregulated genes, respectively, in both cortical regions. Validations of two greatly regulated genes with immunofluorescent staining revealed an increased expression of gephyrin in the ipsilateral S1 after TNI was decreased by EA; while TNI-induced increases in Tomm20, a biomarker of mitochondria, in the contralateral ACC were further enhanced after EA. We concluded that neuropathic pain is associated with differential epigenetic regulations of gene expression in the ACC and S1 and that the analgesic effect of EA may involve regulating cortical gene expression.Item Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine(MDPI, 2019-11-25) Kays, Joanne S.; Yamamoto, Bryan K.; Pharmacology and Toxicology, School of MedicineRNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.Item Expression profiling of the retina of pde6c, a zebrafish model of retinal degeneration(Nature Publishing group, 2017-12-12) Zhang, Liyun; Zhang, Xinlian; Zhang, Gaonan; Pang, Chi Pui; Leung, Yuk Fai; Zhang, Mingzhi; Zhong, Wenxuan; Biochemistry and Molecular Biology, School of MedicineRetinal degeneration often affects the whole retina even though the disease-causing gene is specifically expressed in the light-sensitive photoreceptors. The molecular basis of the retinal defect can potentially be determined by gene-expression profiling of the whole retina. In this study, we measured the gene-expression profile of retinas microdissected from a zebrafish pde6cw59 (pde6c) mutant. This retinal-degeneration model not only displays cone degeneration caused by a cone-specific mutation, but also other secondary cellular changes starting from 4 days postfertilization (dpf). To capture the underlying molecular changes, we subjected pde6c and wild-type (WT) retinas at 5 dpf/ 120 h postfertilization (hpf) to RNA sequencing (RNA-Seq) on the Illumina HiSeq 2,000 platform. We also validated the RNA-Seq results by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) of seven phototransduction genes. Our analyses indicate that the RNA-Seq dataset was of high quality, and effectively captured the molecular changes in the whole pde6c retina. This dataset will facilitate the characterization of the molecular defects in the pde6c retina at the initial stage of retinal degeneration.Item IL-4 impairs wound healing potential in the skin by repressing fibronectin expression(Elsevier, 2017-01) Serezani, Ana PM; Bozdogan, Gunseli; Sehra, Sarita; Walsh, Daniel; Krishnamurthy, Purna; Potchanant, Elizabeth A Sierra; Nalepa, Grzegorz; Goenka, Shreevrat; Turner, Matthew J.; Spandau, Dan F.; Kaplan, Mark H.; Pediatrics, School of MedicineBACKGROUND: Atopic dermatitis (AD) is characterized by intense pruritis and is a common childhood inflammatory disease. Many factors are known to affect AD development, including the pleiotropic cytokine IL-4. Yet little is known regarding the direct effects of IL-4 on keratinocyte function. OBJECTIVE AND METHODS: In this report RNA sequencing and functional assays were used to define the effect of the allergic environment on primary keratinocyte function and wound repair in mice. RESULTS: Acute or chronic stimulation by IL-4 modified expression of more than 1000 genes expressed in human keratinocytes that are involved in a broad spectrum of nonoverlapping functions. Among the IL-4-induced changes, repression of fibronectin critically impaired the human keratinocyte wound response. Moreover, in mouse models of spontaneous and induced AD-like lesions, there was delayed re-epithelialization. Importantly, topical treatment with fibronectin restored the epidermal repair response. CONCLUSION: Keratinocyte gene expression is critically shaped by IL-4, altering cell fate decisions, which are likely important for the clinical manifestations and pathology of allergic skin disease.Item Investigation of the Knockout of LMF1 on the Transcriptome of Toxoplasma gondii(2024-01) Thibodeau, Katherine E.; Arrizabalaga, Gustavo; Absalon, Sabrina; Fehrenbacher, Jill; Flak, Jonathan; Schmidt, NathanToxoplasma gondii is an obligate intracellular apicomplexan parasite that infects one third of the global population. There are limited treatments for Toxoplasmosis, however a potential drug target for Toxoplasma is its mitochondrion. While much is known about the function of this organelle in Toxoplasma, little is known about the mechanisms that regulate mitochondrial structure and division. The shape of the mitochondrion changes throughout the life cycle of the parasite. When inside a host cell, the mitochondrion is in a lasso shape, stretching around the periphery of the parasite, while in extracellular parasites it is collapsed towards the apical end of the parasite. While in a lasso shape the mitochondrion shows areas of contact with the parasite pellicle. We have determined that the proteins LMF1 (associated with the outer mitochondrial membrane) and IMC10 (inner membrane complex) interact and form a reversible tether that maintains the lasso shape of the mitochondrion. When either of these proteins are knocked out, the mitochondrion collapses. To elucidate the biological relevance of the interaction between the mitochondrion and the pellicle we explored the consequence of disrupting the interaction on the transcriptome of the parasite. RNA sequencing of the LMF1 knockout strain showed a disruption in the expression of genes involved in nucleotide metabolism and Coenzyme A biosynthesis, which might be an adaptation mechanism to the disruption of mitochondrial morphology. Current work focuses on investigating the connection between mitochondrial tethering and these pathways as well as a potential role for the mitochondrion/pellicle connection in metabolite transport.Item Loss of succinyl-CoA synthetase in mouse forebrain results in hypersuccinylation with perturbed neuronal transcription and metabolism(Elsevier, 2023) Lancaster, Makayla S.; Kim, Byungwook; Doud, Emma H.; Tate, Mason D.; Sharify, Ahmad D.; Gao, Hongyu; Chen, Duojiao; Simpson, Ed; Gillespie, Patrick; Chu, Xiaona; Miller, Marcus J.; Wang, Yue; Liu, Yunlong; Mosley, Amber L.; Kim, Jungsu; Graham, Brett H.; Medical and Molecular Genetics, School of MedicineLysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.Item Multi-Omics Analysis of Brain Metastasis Outcomes Following Craniotomy(Frontiers Media, 2021-04-06) Su, Jing; Song, Qianqian; Qasem, Shadi; O’Neill, Stacey; Lee, Jingyun; Furdui, Cristina M.; Pasche, Boris; Metheny-Barlow, Linda; Masters, Adrianna H.; Lo, Hui-Wen; Xing, Fei; Watabe, Kounosuke; Miller, Lance D.; Tatter, Stephen B.; Laxton, Adrian W.; Whitlow, Christopher T.; Chan, Michael D.; Soike, Michael H.; Ruiz, Jimmy; Biostatistics, School of Public HealthBackground: The incidence of brain metastasis continues to increase as therapeutic strategies have improved for a number of solid tumors. The presence of brain metastasis is associated with worse prognosis but it is unclear if distinctive biomarkers can separate patients at risk for CNS related death. Methods: We executed a single institution retrospective collection of brain metastasis from patients who were diagnosed with lung, breast, and other primary tumors. The brain metastatic samples were sent for RNA sequencing, proteomic and metabolomic analysis of brain metastasis. The primary outcome was distant brain failure after definitive therapies that included craniotomy resection and radiation to surgical bed. Novel prognostic subtypes were discovered using transcriptomic data and sparse non-negative matrix factorization. Results: We discovered two molecular subtypes showing statistically significant differential prognosis irrespective of tumor subtype. The median survival time of the good and the poor prognostic subtypes were 7.89 and 42.27 months, respectively. Further integrated characterization and analysis of these two distinctive prognostic subtypes using transcriptomic, proteomic, and metabolomic molecular profiles of patients identified key pathways and metabolites. The analysis suggested that immune microenvironment landscape as well as proliferation and migration signaling pathways may be responsible to the observed survival difference. Conclusion: A multi-omics approach to characterization of brain metastasis provides an opportunity to identify clinically impactful biomarkers and associated prognostic subtypes and generate provocative integrative understanding of disease.