- Browse by Subject
Browsing by Subject "Pulmonary hypertension"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item A systemic congestive index (systemic pulse pressure to central venous pressure ratio) predicts adverse outcomes in patients undergoing valvular heart surgery(Wiley, 2022) Knio, Ziyad O.; Morales, Frances L.; Shah, Kajal P.; Ondigi, Olivia K.; Selinski, Christian E.; Baldeo, Cherisse M.; Zhuo, David X.; Bilchick, Kenneth C.; Mehta, Nishaki K.; Kwon, Younghoon; Breathett, Khadijah; Thiele, Robert H.; Hulse, Matthew C.; Mazimba, Sula; Medicine, School of MedicineBackground and aims: Invasive hemodynamics may provide a more nuanced assessment of cardiac function and risk phenotyping in patients undergoing cardiac surgery. The systemic pulse pressure (SPP) to central venous pressure (CVP) ratio represents an integrated index of right and left ventricular function and thus may demonstrate an association with valvular heart surgery outcomes. This study hypothesized that a low SPP/CVP ratio would be associated with mortality in valvular surgery patients. Methods: This retrospective cohort study examined adult valvular surgery patients with preoperative right heart catheterization from 2007 through 2016 at a single tertiary medical center (n = 215). Associations between the SPP/CVP ratio and mortality were investigated with univariate and multivariate analyses. Results: Among 215 patients (age 69.7 ± 12.4 years; 55.8% male), 61 died (28.4%) over a median follow-up of 5.9 years. A SPP/CVP ratio <7.6 was associated with increased mortality (relative risk 1.70, 95% confidence interval [CI] 1.08-2.67, p = .019) and increased length of stay (11.56 ± 13.73 days vs. 7.93 ± 4.92 days, p = .016). It remained an independent predictor of mortality (adjusted odds ratio 3.99, 95% CI 1.47-11.45, p = .008) after adjusting for CVP, mean pulmonary artery pressure, aortic stenosis, tricuspid regurgitation, smoking status, diabetes mellitus, dialysis, and cross-clamp time. Conclusions: A low SPP/CVP ratio was associated with worse outcomes in patients undergoing valvular heart surgery. This metric has potential utility in preoperative risk stratification to guide patient selection, prognosis, and surgical outcomes.Item Altered Smooth Muscle Cell Histone Acetylome by the SPHK2/S1P Axis Promotes Pulmonary Hypertension(American Heart Association, 2023) Ranasinghe, A. Dushani C. U.; Holohan, Maggie; Borger, Kalyn M.; Donahue, Deborah L.; Kuc, Rafael D.; Gerig, Martin; Kim, Andrew; Ploplis, Victoria A.; Castellino, Francis J.; Schwarz, Margaret A.; Pediatrics, School of MedicineBackground: Epigenetic regulation of vascular remodeling in pulmonary hypertension (PH) is poorly understood. Transcription regulating, histone acetylation code alters chromatin accessibility to promote transcriptional activation. Our goal was to identify upstream mechanisms that disrupt epigenetic equilibrium in PH. Methods: Human pulmonary artery smooth muscle cells (PASMCs), human idiopathic pulmonary arterial hypertension (iPAH):human PASMCs, iPAH lung tissue, failed donor lung tissue, human pulmonary microvascular endothelial cells, iPAH:PASMC and non-iPAH:PASMC RNA-seq databases, NanoString nCounter, and cleavage under targets and release using nuclease were utilized to investigate histone acetylation, hyperacetylation targets, protein and gene expression, sphingolipid activation, cell proliferation, and gene target identification. SPHK2 (sphingosine kinase 2) knockout was compared with control C57BL/6NJ mice after 3 weeks of hypoxia and assessed for indices of PH. Results: We identified that Human PASMCs are vulnerable to the transcription-promoting epigenetic mediator histone acetylation resulting in alterations in transcription machinery and confirmed its pathological existence in PH:PASMC cells. We report that SPHK2 is elevated as much as 20-fold in iPAH lung tissue and is elevated in iPAH:PASMC cells. During PH pathogenesis, nuclear SPHK2 activates nuclear bioactive lipid S1P (sphingosine 1-phosphate) catalyzing enzyme and mediates transcription regulating histone H3K9 acetylation (acetyl histone H3 lysine 9 [Ac-H3K9]) through EMAP (endothelial monocyte activating polypeptide) II. In iPAH lungs, we identified a 4-fold elevation of the reversible epigenetic transcription modulator Ac-H3K9:H3 ratio. Loss of SPHK2 inhibited hypoxic-induced PH and Ac-H3K9 in mice. We discovered that pulmonary vascular endothelial cells are a priming factor of the EMAP II/SPHK2/S1P axis that alters the acetylome with a specificity for PASMC, through hyperacetylation of histone H3K9. Using cleavage under targets and release using nuclease, we further show that EMAP II-mediated SPHK2 has the potential to modify the local transcription machinery of pluripotency factor KLF4 (Krüppel-like factor 4) by hyperacetylating KLF4 Cis-regulatory elements while deletion and targeted inhibition of SPHK2 rescues transcription altering Ac-H3K9. Conclusions: SPHK2 expression and its activation of the reversible histone H3K9 acetylation in human pulmonary artery smooth muscle cell represent new therapeutic targets that could mitigate PH vascular remodeling.Item Angiotensin Converting Enzyme 2 in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2(American Heart Association, 2020-09) Sharma, Ravindra K.; Stevens, Bruce R.; Obukhov, Alexander G.; Grant, Maria B.; Oudit, Gavin Y.; Li, Qiuhong; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K.; Anatomy and Cell Biology, School of MedicineDiscovery of angiotensin converting enzyme 2 (ACE2) revealed that the renin angiotensin system (RAS) has two counterbalancing arms. ACE2 is a major player in the protective arm, highly expressed in lungs and gut with the ability to mitigate cardiopulmonary diseases such as inflammatory lung disease. ACE2 also exhibits activities involving gut microbiome, nutrition, and as a chaperone stabilizing the neutral amino acid transporter, B0AT1, in gut. But the current interest in ACE2 arises because it is the cell surface receptor for the novel coronavirus, SARS-CoV-2, to infect host cells, similar to SARS-CoV. This suggests that ACE2 be considered harmful, however because of its important other roles, it is paradoxically a potential therapeutic target for cardiopulmonary diseases including COVID-19, caused by SARS-CoV-2. This review describes the discovery of ACE2, its physiological functions, and its place in the RAS. It illustrates new analyses of the structure of ACE2 that provides better understanding of its actions particularly in lung and gut, shedding of ACE2 by ADAM17 and role of TMPRSS2 in SARS-CoV-2 entry into host cells. Cardiopulmonary diseases are associated with decreased ACE2 activity and the mitigation by increasing ACE2 activity along with its therapeutic relevance are addressed. Finally, the potential use of ACE2 as a treatment target in COVID-19, despite its role to allow viral entry into host cells, is suggested.Item Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement(American Thoracic Society, 2018-08-15) Lahm, Tim; Douglas, Ivor S.; Archer, Stephen L.; Bogaard, Harm J.; Chesler, Naomi C.; Haddad, Francois; Hemnes, Anna R.; Kawut, Steven M.; Kline, Jeffrey A.; Kolb, Todd M.; Mathai, Stephen C.; Mercier, Olaf; Michelakis, Evangelos D.; Naeije, Robert; Tuder, Rubin M.; Ventetuolo, Corey E.; Vieillard-Baron, Antoine; Voelkel, Norbert F.; Vonk-Noordegraaf, Anton; Medicine, School of MedicineBACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.Item At a crossroads: COVID-19 recovery and the risk of pulmonary vascular disease(Wolters Kluwer, 2021) Cascino, Thomas M.; Desai, Ankit A.; Kanthi, Yogendra; Medicine, School of MedicinePurpose of review: The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). Recent findings: Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. Summary: The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.Item Cardiology Assessment of Patients Undergoing Evaluation for Orthotopic Liver Transplantation(Elsevier, 2022-11-25) Lee, Michael S.; Wadia, Subeer; Yeghiazarians, Yerem; Matthews, Ray; White, Christopher J.; Herrmann, Howard C.; O’Donnell, William; McPherson, John; Leesar, Massoud A.; Kreutz, Rolf P.; Brandman, Danielle; Gupta, Anuj; Mandras, Stacy; Kandzari, David E.; Medicine, School of MedicineOrthotopic liver transplantation (OLT) is a viable treatment option for end-stage liver disease. Significant perioperative stress is placed on the cardiovascular system because of hemodynamic changes and the length of the operation. Diagnosis and treatment of cardiovascular disease before OLT are imperative to ensure favorable outcomes. Considerable variability exists among practitioners caring for these patients. Institutions tailor their protocols on the basis of local and historical practices, the preferences of the cardiologists, and the OLT team, and algorithms are not often revised or updated on the basis of the available evidence. In collaboration with cardiology and hepatology experts from leading OLT centers, we sought to examine the diagnostic cardiovascular workup of OLT candidates, including a review of the available literature on the diagnostic modalities used to screen cardiovascular disease before OLT. We advocate an emphasis on noninvasive methods to assess cardiovascular risk with reserved use of invasive risk stratification in select patients.Item Clinical Characteristics and Transplant-Free Survival Across the Spectrum of Pulmonary Vascular Disease(Elsevier, 2022) Hemnes, Anna R.; Leopold, Jane A.; Radeva, Milena K.; Beck, Gerald J.; Abidov, Aiden; Aldred, Micheala A.; Barnard, John; Rosenzweig, Erika B.; Borlaug, Barry A.; Chung, Wendy K.; Comhair, Suzy A. A.; Desai, Ankit A.; Dubrock, Hilary M.; Erzurum, Serpil C.; Finet, J. Emanuel; Frantz, Robert P.; Garcia, Joe G. N.; Geraci, Mark W.; Gray, Michael P.; Grunig, Gabriele; Hassoun, Paul M.; Highland, Kristin B.; Hill, Nicholas S.; Hu, Bo; Kwon, Deborah H.; Jacob, Miriam S.; Jellis, Christine L.; Larive, A. Brett; Lempel, Jason K.; Maron, Bradley A.; Mathai, Stephen C.; McCarthy, Kevin; Mehra, Reena; Nawabit, Rawan; Newman, John H.; Olman, Mitchell A.; Park, Margaret M.; Ramos, Jose A.; Renapurkar, Rahul D.; Rischard, Franz P.; Sherer, Susan G.; Tang, W. H. Wilson; Thomas, James D.; Vanderpool, Rebecca R.; Waxman, Aaron B.; Wilcox, Jennifer D.; Yuan, Jason X-J; Horn, Evelyn M.; PVDOMICS Study Group; Medicine, School of MedicineBackground: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. Objectives: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. Methods: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. Results: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. Conclusions: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification.Item Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex(Elsevier, 2022) Rafikov, Ruslan; Rischard, Franz; Vasilyev, Mikhail; Varghese, Mathews V.; Yuan, Jason X-J; Desai, Ankit A.; Garcia, Joe G.; Rafikova, Olga; Medicine, School of MedicinePulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.Item Derivation of a screening tool to identify patients with right ventricular dysfunction or tricuspid regurgitation after negative computerized tomographic pulmonary angiography of the chest(University of Chicago Press Journals, 2015-03) Kline, Jeffrey A.; Russell, Frances M.; Lahm, Tim; Mastouri, Ronald A.; Department of Medicine, IU School of MedicineMany dyspneic patients who undergo computerized tomographic pulmonary angiography (CTPA) for presumed acute pulmonary embolism (PE) have no identified cause for their dyspnea yet have persistent symptoms, leading to more CTPA scanning. Right ventricular (RV) dysfunction or overload can signal treatable causes of dyspnea. We report the rate of isolated RV dysfunction or overload after negative CTPA and derive a clinical decision rule (CDR). We performed secondary analysis of a multicenter study of diagnostic accuracy for PE. Inclusion required persistent dyspnea and no PE. Echocardiography was ordered at clinician discretion. A characterization of isolated RV dysfunction or overload required normal left ventricular function and RV hypokinesis, or estimated RV systolic pressure of at least 40 mmHg. The CDR was derived from bivariate analysis of 97 candidate variables, followed by multivariate logistic regression. Of 647 patients, 431 had no PE and persistent dyspnea, and 184 (43%) of these 431 had echocardiography ordered. Of these, 64 patients (35% [95% confidence interval (CI): 28%-42%]) had isolated RV dysfunction or overload, and these patients were significantly more likely to have a repeat CTPA within 90 days (P = .02, [Formula: see text] test). From univariate analysis, 4 variables predicted isolated RV dysfunction: complete right bundle branch block, normal CTPA scan, active malignancy, and CTPA with infiltrate, the last negatively. Logistic regression found only normal CTPA scanning significant. The final rule (persistent dyspnea + normal CTPA scan) had a positive predictive value of 53% (95% CI: 37%-69%). We conclude that a simple CDR consisting of persistent dyspnea plus a normal CTPA scan predicts a high probability of isolated RV dysfunction or overload on echocardiography.Item Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart, Lung, and Blood Institute Workshop(American Heart Association, 2021) Leopold, Jane A.; Kawut, Steven M.; Aldred, Micheala A.; Archer, Stephen L.; Benza, Ray L.; Bristow, Michael R.; Brittain, Evan L.; Chesler, Naomi; DeMan, Frances S.; Erzurum, Serpil C.; Gladwin, Mark T.; Hassoun, Paul M.; Hemnes, Anna R.; Lahm, Tim; Lima, Joao A. C.; Loscalzo, Joseph; Maron, Bradley A.; Mercer Rosa, Laura; Newman, John H.; Redline, Susan; Rich, Stuart; Rischard, Franz; Sugeng, Lissa; Tang, W. H. Wilson; Tedford, Ryan J.; Tsai, Emily J.; Ventetuolo, Corey E.; Zhou, YouYang; Aggarwal, Neil R.; Xiao, Lei; Medicine, School of MedicineRight ventricular dysfunction is a hallmark of advanced pulmonary vascular, lung parenchymal, and left heart disease, yet the underlying mechanisms that govern (mal)adaptation remain incompletely characterized. Owing to the knowledge gaps in our understanding of the right ventricle (RV) in health and disease, the National Heart, Lung, and Blood Institute (NHLBI) commissioned a working group to identify current challenges in the field. These included a need to define and standardize normal RV structure and function in populations; access to RV tissue for research purposes and the development of complex experimental platforms that recapitulate the in vivo environment; and the advancement of imaging and invasive methodologies to study the RV within basic, translational, and clinical research programs. Specific recommendations were provided, including a call to incorporate precision medicine and innovations in prognosis, diagnosis, and novel RV therapeutics for patients with pulmonary vascular disease.