- Browse by Subject
Browsing by Subject "Positron-Emission Tomography"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Dramatic polarization in genitourinary expert opinions regarding the clinical utility of positron emission tomography (PET) imaging in prostate cance(SciELO, 2019-01) Sandler, Kiri A.; McClelland, Shearwood, III; Degnin, Catherine; Chen, Yiyi; Mitin, Timur; Radiation Oncology, School of MedicineOBJECTIVES: To ascertain the opinions of North American genitourinary (GU) experts regarding inclusion of technologies such as prostate - specific membrane antigen (PSMA) and C - 11 choline positron emission tomography (PET) into routine practice. MATERIALS AND METHODS: A survey was distributed to North American GU experts. Questions pertained to the role of PSMA and C - 11 PET in PCa management. Participants were categorized as "supporters" or "opponents" of incorporation of novel imaging techniques. Opinions were correlated with practice patterns. RESULTS: Response rate was 54% and we analyzed 42 radiation oncologist respondents. 17 participants (40%) have been in practice for > 20 years and 38 (90%) practice at an academic center. 24 (57%) were supporters of PSMA and 29 (69%) were supporters of C - 11. Supporters were more likely to treat pelvic nodes (88% vs. 56%, p < 01) and trended to be more likely to treat patients with moderate or extreme hypofractionation (58% vs. 28%, p = 065). Supporters trended to be more likely to offer brachytherapy boost (55% vs. 23%, p = 09), favor initial observation and early salvage over adjuvant radiation (77% vs. 55%, p = 09), and to consider themselves expert brachytherapists (69% vs. 39%, p = 09). CONCLUSIONS: There is a polarization among GU radiation oncology experts regarding novel imaging techniques. A correlation emerged between support of novel imaging and adoption of treatment approaches that are clinically superior or less expensive. Pre - existing biases among GU experts on national treatment - decision panels and leaders of cooperative group studies may affect the design of future studies and influence the adoption of these technologies in clinical practice.Item Genetic Interactions Explain Variance in Cingulate Amyloid Burden: An AV-45 PET Genome-Wide Association and Interaction Study in the ADNI Cohort(Hindawi, 2015-09-03) Li, Jin; Zhang, Qiushi; Chen, Feng; Yan, Jingwen; Kim, Sungeun; Wang, Lei; Feng, Weixing; Saykin, Andrew J.; Liang, Hong; Shen, Li; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is the most common neurodegenerative disorder. Using discrete disease status as the phenotype and computing statistics at the single marker level may not be able to address the underlying biological interactions that contribute to disease mechanism and may contribute to the issue of "missing heritability." We performed a genome-wide association study (GWAS) and a genome-wide interaction study (GWIS) of an amyloid imaging phenotype, using the data from Alzheimer's Disease Neuroimaging Initiative. We investigated the genetic main effects and interaction effects on cingulate amyloid-beta (Aβ) load in an effort to better understand the genetic etiology of Aβ deposition that is a widely studied AD biomarker. PLINK was used in the single marker GWAS, and INTERSNP was used to perform the two-marker GWIS, focusing only on SNPs with p ≤ 0.01 for the GWAS analysis. Age, sex, and diagnosis were used as covariates in both analyses. Corrected p values using the Bonferroni method were reported. The GWAS analysis revealed significant hits within or proximal to APOE, APOC1, and TOMM40 genes, which were previously implicated in AD. The GWIS analysis yielded 8 novel SNP-SNP interaction findings that warrant replication and further investigation.Item Metabolic activity in the insular cortex and hypothalamus predicts hot flashes: an FDG-PET study(OUP, 2012-09) Joffe, Hadine; Deckersbach, Thilo; Lin, Nancy U.; Makris, Nikos; Skaar, Todd C.; Rauch, Scott L.; Dougherty, Darin D.; Hall, Janet E.CONTEXT: Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. OBJECTIVE: The aim of the study was to understand whether neurobiological factors predict hot flashes. DESIGN: [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. OUTCOME MEASURES: We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. RESULTS: Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. CONCLUSIONS: Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET.Item Neuroimaging biomarkers of neurodegenerative diseases and dementia(Thieme, 2013-09) Risacher, Shannon L.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineNeurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.Item Novel application of complementary imaging techniques to examine in vivo glucose metabolism in the kidney(American Physiological Society, 2016-04-15) Hato, Takashi; Friedman, Allon N.; Mang, Henry; Plotkin, Zoya; Dube, Shataakshi; Hutchins, Gary D.; Territo, Paul R.; McCarthy, Brian P.; Riley, Amanda A.; Pichumani, Kumar; Malloy, Craig R.; Harris, Robert A.; Dagher, Pierre C.; Sutton, Timothy A.; Medicine, School of MedicineThe metabolic status of the kidney is a determinant of injury susceptibility and a measure of progression for many disease processes; however, noninvasive modalities to assess kidney metabolism are lacking. In this study, we employed positron emission tomography (PET) and intravital multiphoton microscopy (MPM) to assess cortical and proximal tubule glucose tracer uptake, respectively, following experimental perturbations of kidney metabolism. Applying dynamic image acquisition PET with 2-(18)fluoro-2-deoxyglucose ((18)F-FDG) and tracer kinetic modeling, we found that an intracellular compartment in the cortex of the kidney could be distinguished from the blood and urine compartments in animals. Given emerging literature that the tumor suppressor protein p53 is an important regulator of cellular metabolism, we demonstrated that PET imaging was able to discern a threefold increase in cortical (18)F-FDG uptake following the pharmacological inhibition of p53 in animals. Intravital MPM with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) provided increased resolution and corroborated these findings at the level of the proximal tubule. Extending our observation of p53 inhibition on proximal tubule glucose tracer uptake, we demonstrated by intravital MPM that pharmacological inhibition of p53 diminishes mitochondrial potential difference. We provide additional evidence that inhibition of p53 alters key metabolic enzymes regulating glycolysis and increases intermediates of glycolysis. In summary, we provide evidence that PET is a valuable tool for examining kidney metabolism in preclinical and clinical studies, intravital MPM is a powerful adjunct to PET in preclinical studies of metabolism, and p53 inhibition alters basal kidney metabolism.Item Regional imaging genetic enrichment analysis(Oxford University Press, 2020-04-15) Yao, Xiaohui; Cong, Shan; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Moore, Jason H.; Shen, Li; Radiology and Imaging Sciences, School of MedicineMotivation: Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful interpretation and modest dimensionality compared with voxelwise approaches. Typical ROI-level measures used in these studies are summary statistics from voxelwise measures in the region, without making full use of individual voxel signals. Results: In this article, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxelwise enrichment analysis, which embraces the collective effect of weak voxel-level signals and integrates brain anatomical annotation information. Our proposed method achieves three goals at the same time: (i) increase the statistical power by substantially reducing the burden of multiple comparison correction; (ii) employ brain annotation information to enable biologically meaningful interpretation and (iii) make full use of fine-grained voxelwise signals. We demonstrate our method on an imaging genetic analysis using data from the Alzheimer's Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxelwise FDG-positron emission tomography measures between 116 ROIs and 565 373 single-nucleotide polymorphisms. Compared with traditional ROI-wise and voxelwise approaches, our method identified 2946 novel imaging genetic associations in addition to 33 ones overlapping with the two benchmark methods. In particular, two newly reported variants were further supported by transcriptome evidences from region-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain. Availability and implementation: The R code and sample data are freely available at https://github.com/lshen/RIGEA.