- Browse by Subject
Browsing by Subject "Phosphate metabolism"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes(Elsevier, 2024) Sakamoto, Eijiro; Kitase, Yukiko; Fitt, Alexander J.; Zhu, Zewu; Awad, Kamal; Brotto, Marco; White, Kenneth E.; Welc, Steven S.; Bergwitz, Clemens; Bonewald, Lynda F.a; Anatomy, Cell Biology and Physiology, School of MedicineWith exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.Item Effect of kidney donation on bone mineral metabolism(Public Library of Science, 2020-07-07) Hiemstra, Thomas F.; Smith, Jane C.; Lim, Kenneth; Xu, Dihua; Kulkarni, Shreya; Bradley, J. Andrew; Paapstel, Kaido; Schoenmakers, Inez; Bradley, John R.; Tomlinson, Laurie; McEniery, Carmel M.; Wilkinson, Ian B.; Medicine, School of MedicineKidney donation results in reductions in kidney function and lasting perturbations in phosphate homeostasis, which may lead to adverse cardiovascular sequelae. However, the acute effects of kidney donation on bone mineral parameters including regulators of calcium and phosphate metabolism are unknown. We conducted a prospective observational controlled study to determine the acute effects of kidney donation on mineral metabolism and skeletal health. Biochemical endpoints were determined before and after donation on days 1, 2 and 3, 6 weeks and 12 months in donors and at baseline, 6 weeks and 12 months in controls. Baseline characteristic of donors (n = 34) and controls (n = 34) were similar: age (53±10 vs 50±14 years, p = 0.33), BMI (26.3±2.89 vs 25.9±3.65, p = 0.59), systolic BP (128±13 vs 130±6 mmHg, p = 0.59), diastolic BP (80±9 vs 81±9 mmHg, p = 0.68) and baseline GFR (84.4±20.2 vs 83.6±25.2 ml/min/1.73m2, p = 0.89). eGFR reduced from 84.4±20.2 to 52.3±17.5 ml/min/1.73m2 (p<0.001) by day 1 with incomplete recovery by 12 months (67.7±22.6; p = 0.002). Phosphate increased by day 1 (1.1(0.9–1.2) to 1.3(1.1–1.4) mmol/L, p <0.001) but declined to 0.8(0.8–1.0) mmol/L (p<0.001) before normalizing by 6 weeks. Calcium declined on day 1 (p = 0.003) but recovered at 6 weeks or 12 months. PTH and FGF-23 remained unchanged, but α-Klotho reduced by day 1 (p = 0.001) and remained low at 6 weeks (p = 0.02) and 1 year (p = 0.04). In this study, we conclude that kidney donation results in acute disturbances in mineral metabolism characterised by a reduced phosphate and circulating α-Klotho concentration without acute changes in the phosphaturic hormones FGF23 and PTH.Item Identification of a second Klotho interaction site in the C terminus of FGF23(Elsevier, 2021) Agrawal, Archita; Ni, Pu; Agoro, Rafiou; White, Kenneth E.; DiMarchi, Richard D.; Medical and Molecular Genetics, School of MedicineFGF23 interacts with a FGFR/KL-receptor complex to propagate cellular signaling, where its C-terminal C26 peptide is critical for engaging the co-receptor KL. We identify a distinct peptide sequence C28 residing in the FGF23 C terminus that regulates its interaction with KL. C28 can independently function as an FGF23 antagonist, and we report an optimized peptide antagonist of much enhanced potency. FGF23 can use either of the two C-terminal sites to exert biological effects, as shown by in vitro and in vivo studies. The loss of both KL-interaction sites inactivates the protein. We conclude that the C terminus of FGF23 is a bidentate ligand possessing two independent KL-interaction sites. The identification of this second KL-association site provides an additional perspective in the molecular basis of FGF23-receptor signaling and raises questions pertaining to its structural mechanism of action and the potential for biased biological signaling.Item Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease(Elsevier, 2022) Yanucil, Christopher; Kentrup, Dominik; Campos, Isaac; Czaya, Brian; Heitman, Kylie; Westbrook, David; Osis, Gunars; Grabner, Alexander; Wende, Adam R.; Vallejo, Julian; Wacker, Michael J.; Navarro-Garcia, Jose Alberto; Ruiz-Hurtado, Gema; Zhang, Fuming; Song, Yuefan; Linhardt, Robert J.; White, Kenneth; Kapiloff, Michael S.; Faul, Christian; Medical and Molecular Genetics, School of MedicineFibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions, and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4, and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 coreceptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.Item Testing bone cell models responsive to a soluble form of klotho(2016-11) Bonfitto, Anna; White, Kenneth E.Fibroblast growth factor-23 (FGF23) is a hormone produced in bone that acts upon the kidney to control blood phosphate and 1,25-(OH)2 vitamin D concentrations. Chronic kidney disease-mineral bone disorder (CKD-MBD) is a major public health problem, affecting 1 in 8 individuals. These patients can have markedly elevated FGF23 at end stage disease which is associated with metabolic bone anomalies, left ventricular hypertrophy, as well as increased mortality (>6-fold). The FGF23 co-receptor αKlotho (αKL) is a membrane-bound protein (mKL) that forms heteromeric complexes with FGF receptors (FGFRs) to initiate intracellular signaling. It also circulates as a cleavage product of mKL (‘cleaved’, or cKL). Previously, a patient with increased plasma cKL from a balanced translocation between chromosomes 9 and 13 in the KLOTHO gene presented with metabolic bone disease and a complex endocrine profile, despite hypophosphatemia. The lack of a reliable cell model in which to study potential FGF23-cKL interactions is a major hurdle for the field of phosphate metabolism. The goal of the present studies was to test and characterize bone cell lines that may respond to FGF23 and/or cKL, permitting study of novel aspects of phosphate handling and control of FGF23 expression. It was confirmed that stable delivery of cKL via AAV2/8 to wild type (WT) and KL-KO mice resulted in highly elevated bone FGF23 mRNA. MC3T3 (mouse) and ROS (rat) osteoblastic cell lines were tested for p-ERK1/2 responses to control FGFs, as well as FGF23 and cKL, alone or in combination. Importantly, both cell lines demonstrated responsiveness to FGF23+cKL only, and not the individual factors. To test responsiveness at the cell level, EGR1 mRNA was tested as an index of FGFR activity and showed modest increases with the same treatments, supporting that other factors may be required for full transcriptional effects. The present studies show that MC3T3 have FGF-dependent signaling capabilities, and that the combination of FGF23+cKL is required for efficient MAPK signaling. These results demonstrated that cKL provision is permissive for efficient FGF23 signaling in bone, and revealed important implications for the regulation of FGF23 and cKL in Mendelian, and common, genetic disorders of phosphate handling and biomineralization.