- Browse by Subject
Browsing by Subject "Pharmacogenomic testing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Development of a Multifaceted Program for Pharmacogenetics Adoption at an Academic Medical Center: Practical Considerations and Lessons Learned(Wiley, 2024) Shugg, Tyler; Tillman, Emma M.; Breman, Amy M.; Hodge, Jennelle C.; McDonald, Christine A.; Ly, Reynold C.; Rowe, Elizabeth J.; Osei, Wilberforce; Smith, Tayler B.; Schwartz, Peter H.; Callaghan, John T.; Pratt, Victoria M.; Lynch, Sheryl; Eadon, Michael T.; Skaar, Todd C.; Medicine, School of MedicineIn 2019, Indiana University launched the Precision Health Initiative to enhance the institutional adoption of precision medicine, including pharmacogenetics (PGx) implementation, at university-affiliated practice sites across Indiana. The overarching goal of this PGx implementation program was to facilitate the sustainable adoption of genotype-guided prescribing into routine clinical care. To accomplish this goal, we pursued the following specific objectives: (i) to integrate PGx testing into existing healthcare system processes; (ii) to implement drug-gene pairs with high-level evidence and educate providers and pharmacists on established clinical management recommendations; (iii) to engage key stakeholders, including patients to optimize the return of results for PGx testing; (iv) to reduce health disparities through the targeted inclusion of underrepresented populations; (v) and to track third-party reimbursement. This tutorial details our multifaceted PGx implementation program, including descriptions of our interventions, the critical challenges faced, and the major program successes. By describing our experience, we aim to assist other clinical teams in achieving sustainable PGx implementation in their health systems.Item Identifying End Users' Preferences about Structuring Pharmacogenetic Test Orders in an Electronic Health Record System(Elsevier, 2020-10) Hull, Leland E.; Vassy, Jason L.; Stone, Annjanette; Chanfreau-Coffinier, Catherine C.; Heise, Craig W.; Pratt, Victoria M.; Przygodzki, Ronald; Voils, Corrine I.; Voora, Deepak; Wang-Rodriguez, Jessica; Schichman, Steven A.; Scheuner, Maren T.; Medical and Molecular Genetics, School of MedicinePharmacogenetics (PGx) testing can be used for detecting genetic variations that may affect an individual's anticipated metabolism of, or response to, medications. Although several studies have focused on developing tools for delivering results from PGx testing, there is a relative dearth of information about how to design provider-friendly electronic order-entry systems for PGx. The U.S. Department of Veterans Affairs (VA) is preparing to implement a new electronic health records system. In this study, VA PGx test end users were surveyed about their preferences for how electronic test orders for PGx should be structured, including the nomenclature that should be used to search for and identify PGx-test orders, whether to offer single- versus multigene tests, and whether information about test methodology should be included in the order name. Responses were analyzed systematically to identify areas of agreement and disagreement with the survey options, and areas where respondents' opinions diverged. End users endorsed preferences for flexible ways to identify and order PGx tests and multigene panel tests; opinions on whether test methodology should be included in the test name were divergent. The results could be used for both informing the VA's new electronic health records implementation (including how PGx tests are searched for and ordered) and for providing insights for other health systems implementing PGx-testing programs.Item Multisite investigation of strategies for the clinical implementation of pre-emptive pharmacogenetic testing(Elsevier, 2021) Duarte, Julio D.; Dalton, Rachel; Elchynski, Amanda L.; Smith, D. Max; Cicali, Emily J.; Lee, James C.; Duong, Benjamin Q.; Petry, Natasha J.; Aquilante, Christina L.; Beitelshees, Amber L.; Empey, Philip E.; Johnson, Julie A.; Obeng, Aniwaa Owusu; Pasternak, Amy L.; Pratt, Victoria M.; Ramsey, Laura B.; Tuteja, Sony; Van Driest, Sara L.; Wiisanen, Kristin; Hicks, J. Kevin; Cavallari, Larisa H.; IGNITE Network Pharmacogenetics Working Group; Medical and Molecular Genetics, School of MedicinePurpose: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear. Methods: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates. Results: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low. Conclusion: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program.Item Prescribing Prevalence of Medications With Potential Genotype-Guided Dosing in Pediatric Patients(American Medical Association, 2020-12) Ramsey, Laura B.; Ong, Henry H.; Schildcrout, Jonathan S.; Shi, Yaping; Tang, Leigh Anne; Hicks, J. Kevin; El Rouby, Nihal; Cavallari, Larisa H.; Tuteja, Sony; Aquilante, Christina L.; Beitelshees, Amber L.; Lemkin, Daniel L.; Blake, Kathryn V.; Williams, Helen; Cimino, James J.; Davis, Brittney H.; Limdi, Nita A.; Empey, Philip E.; Horvat, Christopher M.; Kao, David P.; Lipori, Gloria P.; Rosenman, Marc B.; Skaar, Todd C.; Teal, Evgenia; Winterstein, Almut G.; Obeng, Aniwaa Owusu; Salyakina, Daria; Gupta, Apeksha; Gruber, Joshua; McCafferty-Fernandez, Jennifer; Bishop, Jeffrey R.; Rivers, Zach; Benner, Ashley; Tamraz, Bani; Long-Boyle, Janel; Peterson, Josh F.; Van Driest, Sara L.; Pediatrics, School of MedicineImportance: Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective: To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, setting, and participants: This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures: Prescription of 38 level A medications based on electronic health records. Main outcomes and measures: Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results: Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and relevance: These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants.Item Rationale and design for a pragmatic randomized trial to assess gene-based prescribing for SSRIs in the treatment of depression(Wiley, 2024) Hines, Lindsay J.; Wilke, Russell A.; Myers, Rachel; Mathews, Carol A.; Liu, Michelle; Baye, Jordan F.; Petry, Natasha; Cicali, Emily J.; Duong, Benjamin Q.; Elwood, Erica; Hulvershorn, Leslie; Nguyen, Khoa; Ramos, Michelle; Sadeghpour, Azita; Wu, R. Ryanne; Williamson, Lloyda; Wiisanen, Kristin; Voora, Deepak; Singh, Rajbir; Blake, Kathryn V.; Murrough, James W.; Volpi, Simona; Ginsburg, Geoffrey S.; Horowitz, Carol R.; Orlando, Lori; Chakraborty, Hrishikesh; Dexter, Paul; Johnson, Julie A.; Skaar, Todd C.; Cavallari, Larisa H.; Van Driest, Sara L.; Peterson, Josh F.; IGNITE Pragmatic Trials Network; Psychiatry, School of MedicineSpecific selective serotonin reuptake inhibitors (SSRIs) metabolism is strongly influenced by two pharmacogenes, CYP2D6 and CYP2C19. However, the effectiveness of prospectively using pharmacogenetic variants to select or dose SSRIs for depression is uncertain in routine clinical practice. The objective of this prospective, multicenter, pragmatic randomized controlled trial is to determine the effectiveness of genotype-guided selection and dosing of antidepressants on control of depression in participants who are 8 years or older with ≥3 months of depressive symptoms who require new or revised therapy. Those randomized to the intervention arm undergo pharmacogenetic testing at baseline and receive a pharmacy consult and/or automated clinical decision support intervention based on an actionable phenotype, while those randomized to the control arm have pharmacogenetic testing at the end of 6-months. In both groups, depression and drug tolerability outcomes are assessed at baseline, 1 month, 3 months (primary), and 6 months. The primary end point is defined by change in Patient-Reported Outcomes Measurement Information System (PROMIS) Depression score assessed at 3 months versus baseline. Secondary end points include change inpatient health questionnaire (PHQ-8) measure of depression severity, remission rates defined by PROMIS score < 16, medication adherence, and medication side effects. The primary analysis will compare the PROMIS score difference between trial arms among those with an actionable CYP2D6 or CYP2C19 genetic result or a CYP2D6 drug-drug interaction. The trial has completed accrual of 1461 participants, of which 562 were found to have an actionable phenotype to date, and follow-up will be complete in April of 2024.Item Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and the European Society for Pharmacogenomics and Personalized Therapy(Elsevier, 2021) Pratt, Victoria M.; Cavallari, Larisa H.; Del Tredici, Andria L.; Gaedigk, Andrea; Hachad, Houda; Ji, Yuan; Kalman, Lisa V.; Ly, Reynold C.; Moyer, Ann M.; Scott, Stuart A.; van Schaik, R.H.N.; Whirl-Carrillo, Michelle; Weck, Karen E.; Medical and Molecular Genetics, School of MedicineThe goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing, and to determine a minimal set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations on a minimal panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories in designing assays for PGx testing. When developing these recommendations, the Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations with regard to PGx testing. The ultimate goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document is focused on clinical CYP2D6 PGx testing that may be applied to all cytochrome P450 2D6-metabolized medications. These recommendations are not meant to be interpreted as prescriptive but to provide a reference guide for clinical laboratories that may be either implementing PGx testing or reviewing and updating their existing platform.