- Browse by Subject
Browsing by Subject "Paleoclimatology"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A 4600-year record of lake level and hydroclimate variability from an eastern Andean lake in Colombia(2016-05) Rudloff, Owen M.; Bird, Broxton Williams; Gilhooly, William, III; Filippelli, Gabriel M.Hydroclimatic variability in the eastern Colombian Andes is examined using a decadally-resolved, multiproxy lake sediment record from Laguna de Ubaque, Colombia. Hydroclimate trends are examined and compared to existing local, regional, and trans-Andean records to enhance existing knowledge of Late Holocene Colombian precipitation and assess potential hydroclimatic forcing mechanisms in tropical South America. Sedimentological analyses, including percent lithics, grain size, C:N and magnetic susceptibility are sensitive to hydroclimate and lake level while charcoal size and concentrations reflect fire variability. Results show that deep lacustrine conditions characterized by laminated deposits were not established until approximately 3500 cal yr B.P., prior to which, terrestrial C:N values and unstructured sediments indicate that drier, marsh-like conditions prevailed. Between 3500 and 2000 cal yr B.P., interrupted only by a 300-year arid interval from 2800 to 2500 cal yr B.P., greatly increased overall clastic deposition indicates a broad precipitation maximum while decreased sand deposition and the preservation of finely laminated sediment indicate deep lake conditions. After 2000 cal yr B.P., decreased clastic deposition suggests reduced precipitation, but the continued accumulation of laminated sediments indicates that conditions were wet enough to fill the basin continuously until the present day. These observations address two of the driving questions of Andean paleoclimate: were the northern and southern Andes in vi phase during the Holocene, or out of phase, and what are the main drivers of Holocene Andean climate? We find that the early part of Ubaque’s record more closely resembles southern Andean precipitation records until 2000 cal yr B.P., at which point it abruptly switches to resemble northern precipitation records. We attribute this to a combination of the southward migration of the intertropical convergence zone (ITCZ), and an increase in eastern Pacific sea surface temperatures (SST). In addition, we find that Colombian hydroclimate records exhibit a bimodal precipitation pattern, which we attribute to their location either on the Andean slopes or in the high interior Andes.Item The impact of glaciation and climate change on biogeochemical cycling and landscape development(2012-03-19) Mabry, James Brice; Filippelli, Gabriel M.; Licht, Kathy J.; Wang, XianzhongLake cores from Dry Lake, California and Crystal Lake, Illinois were analyzed to identify climate variability and characterize landscape response to glacial/deglacial climate transitions. Geochemical analysis of the Dry Lake sediment prior to the 8.2 kyr event revealed average values for percent total organic carbon to be 4% with a range of 0.2% to 15.2%. The average decreased to approximately 2.1% with a range of 0.4% to 5.3% during and after the event. Occluded phosphorus averaged 488 µg/g before the 8.2 kyr event and 547 µg/g after but was much lower during the event at 287 µg/g. These results were interpreted as an environment which began as warm, wet, and productive then quickly turned colder and drier during the 8.2 kyr event which resulted in a resetting of soil development. The higher temperatures returned after the 8.2 kyr event which allowed for continued soil development despite its drier climate. Previous research corroborated these conclusions. The Crystal Lake geochemical record was very different from Dry Lake. Percent total organic carbon averaged 6.7% with a range of 3.9% to 8.5% during the Younger Dryas but recorded a lower average before and after at 4.9% and 4.6% respectively. Occluded phosphorus acted similarly with a higher average during the cooling event, 2626 µg/g, and lower averages before and after, 1404 µg/g and 1461 µg/g, respectively. This was interpreted as continued productivity and soil development through the cold period which was attributed to a change in biomass.Item A laminated carbonate record of late holocene precipitation/evaporation from Pretty Lake, Lagrange County, Indiana(2016-11-06) Albert, Ashley Lisbeth; Bird, BroxtonLate Holocene hydroclimate variability in the midcontinental United States is not well understood because there is a lack of high-resolution paleoclimate records constraining historical climate patterns for the region. Here, a 2500-year-long multi proxy lake sediment record from a northern Indiana kettle lake is used to examine spatial and temporal scales of drought and pluvial patterns in the Midwest. Oxygen (18Ocal) isotope analysis of authigenic carbonate and the sedimentary lithic abundance (%lithics) are the primary datasets used to evaluate hydroclimate trends with supporting information from total organic matter, total carbonate and magnetic susceptibility. We additionally derive a record of local evaporation by subtracting the isotopic composition of precipitation (18Oprecip) as characterized by the nearby Martin Lake, IN, record, from the Pretty Lake 18Ocal record. The combined Pretty Lake hydroclimate record documents climate variability during the last 2 millennia and shows that the Midwest has experienced a wide range of evaporative regimes during the late Holocene. We notice a consistent relationship between the Pretty and Martin Lake multi-proxy records; where reduced (increased) evaporative periods and higher (lower) lake levels at Pretty Lake mostly align with increased (decreased) Gulf sourced precipitation and stream erosion with longer (shorter) warm seasons at Martin Lake. Early periods of much drier, and weakened warm-season evaporation patterns dominated from 600 BCE to 900 CE. Evidence of a prolonged period of enhanced warm-season pluvial conditions, with less evaporation and higher lake levels, during the Medieval Climate Anomaly (MCA) between 900 to 1350 CE; and a pronounced century of arid conditions throughout the Little Ice Age (LIA) from 1350 to 1700 CE followed by a gradual decrease in evaporation and rising lake levels starting at 1700 CE and continuing to present. These trends track other Midwest regional hydroclimate climate records, but show an anti-phased relationship with records from the High Plains and western United States regions. This supports the idea that a hydrocilmate dipole exists between the Midwest and western United States driven largely by mean state changes in the Pacific North American teleconnection pattern, but with modification by local and in-lake responses to mean climate states.Item Ocean-atmosphere forcing of centennial hydroclimate variability in the Pacific Northwest(AGU, 2014-03-11) Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Ortiz, Joseph D.; Feng, Song; Pompeani, David P.; Stansell, Nathan D.; Anderson, Lesleigh; Finney, Bruce P.; Bird, Broxton W.; Earth Sciences, School of ScienceReconstructing centennial timescale hydroclimate variability during the late Holocene is critically important for understanding large-scale patterns of drought and their relationship with climate dynamics. We present sediment oxygen isotope records spanning the last two millennia from 10 lakes, as well as climate model simulations, indicating that the Little Ice Age was dry relative to the Medieval Climate Anomaly in much of the Pacific Northwest of North America. This pattern is consistent with observed associations between the El Niño–Southern Oscillation (ENSO), the Northern Annular Mode, and drought as well as with proxy-based reconstructions of Pacific and Atlantic ocean-atmosphere variations over the past 1000 years. The large amplitude of centennial variability indicated by the lake data suggests that regional hydroclimate is characterized by longer-term shifts in ENSO-like dynamics and that an improved understanding of the centennial timescale relationship between external forcing and drought is necessary for projecting future hydroclimatic conditions in western North America.Item Using sediment accumulation rates in floodplain paleochannel lakes to reconstruct climate-flood relationships on the lower Ohio River(Elsevier, 2022-12-15) Gibson , Derek K.; Bird, Broxton W.; Pollard, Harvie J.; Nealy, Cameron A.; Barr, Robert C.; Escobar, Jaime; Earth and Environmental Sciences, School of ScienceLate Holocene flood frequencies on the lower Ohio River were investigated using 14C-based sedimentation rates from three floodplain lakes located in Illinois (Avery Lake), Kentucky (Grassy Pond), and Indiana (Goose Pond). Changes in sediment accumulation rates were attributed to variability in the delivery of overbank sediment to each site as controlled by the frequency of Ohio River flooding. Sedimentation rates reached their lowest values in all three lakes between 400 and 1230 CE, indicating a regional reduction in flood frequencies on the lower Ohio River during a period that included the Medieval Climate Anomaly (MCA; ca. 950–1250 CE). Sedimentation rates increased after ca. 1230 CE and remained moderately high through the Little Ice Age (LIA; 1350–1820 CE) until the onset of extensive land clearance during the early 1800s CE. After 1820 CE, sedimentation rates increased further and were higher than any other time during the late Holocene. A comparison of regional paleoclimatic proxies with the above floodplain sedimentation records shows that Ohio River flooding during the late Holocene was responsive to mean-state changes in atmospheric circulation. During the MCA, when clockwise mean-state atmospheric circulation advected southerly moisture from the Gulf of Mexico into the Ohio River Valley primarily in the form of convective rainstorms, flooding on the Ohio River was least frequent. During the LIA, meridional mean-state atmospheric circulation increased the proportion of midcontinental moisture that was sourced from the northern Pacific and Arctic and delivered as snowfall, hence increasing flooding on the Ohio River. We attribute the increase in Ohio River flooding during the LIA to an increase in snowpack volume across the Ohio River Valley and the watershed-scale integration of runoff during spring snowmelt. Following Euro-American land clearance in the early 1800s, flood frequencies decoupled from this relationship and the lower Ohio River became susceptible to frequent flooding, despite a return to southerly and clockwise synoptic atmospheric conditions. These modern climate-flood dynamics are fundamentally different than those of the paleo-record and suggest that land-use changes – such as deforestation, tile draining, and landscape conversion to intensive row crop agriculture – have fundamentally altered the modern Midwestern hydrologic cycle.