- Browse by Subject
Browsing by Subject "Orthomyxoviridae Infections"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection(Elsevier, 2019-12) Bissel, Stephanie J.; Carter, Chalise E.; Wang, Guoji; Johnson, Scott K.; Lashua, Lauren P.; Kelvin, Alyson A.; Wiley, Clayton A.; Ghedin, Elodie; Ross, Ted M.; Medical and Molecular Genetics, School of MedicineInfluenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.Item NMP4 regulates the innate immune response to influenza A virus infection(Springer Nature, 2021-01) Yang, Shuangshuang; Adaway, Michele; Du, Jianguang; Huang, Shengping; Sun, Jie; Bidwell, Joseph P.; Zhou, Baohua; Pediatrics, School of MedicineSevere influenza A virus infection typically triggers excessive and detrimental lung inflammation with massive cell infiltration and hyper-production of cytokines and chemokines. We identified a novel function for nuclear matrix protein 4 (NMP4), a zinc-finger-containing transcription factor playing roles in bone formation and spermatogenesis, in regulating antiviral immune response and immunopathology. Nmp4-deficient mice are protected from H1N1 influenza infection, losing only 5% body weight compared to a 20% weight loss in wild type mice. While having no effects on viral clearance or CD8/CD4 T cell or humoral responses, deficiency of Nmp4 in either lung structural cells or hematopoietic cells significantly reduces the recruitment of monocytes and neutrophils to the lungs. Consistent with fewer innate cells in the airways, influenza-infected Nmp4-deficient mice have significantly decreased expression of chemokine genes Ccl2, Ccl7 and Cxcl1 as well as pro-inflammatory cytokine genes Il1b and Il6. Furthermore, NMP4 binds to the promoters and/or conserved non-coding sequences of the chemokine genes and regulates their expression in mouse lung epithelial cells and macrophages. Our data suggest that NMP4 functions to promote monocyte- and neutrophil-attracting chemokine expression upon influenza A infection, resulting in exaggerated innate inflammation and lung tissue damage.Item PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae(Science Immunology, 2019-06-14) Wang, Zheng; Wang, Shaohua; Goplen, Nick P.; Li, Chaofan; Cheon, In Su; Dai, Qigang; Huang, Su; Shan, Jinjun; Ma, Chaoyu; Ye, Zhenqing; Xiang, Min; Limper, Andrew H.; Porquera, Eva-Carmona; Kohlmeier, Jacob E.; Kaplan, Mark H.; Zhang, Nu; Johnson, Aaron J.; Vassallo, Robert; Sun, Jie; Microbiology and Immunology, School of MedicineCD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 costimulation after acute influenza infection. These TRM cells have both exhausted-like phenotypes and memory features and provide heterologous immunity against secondary infection. PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective immunity.