- Browse by Subject
Browsing by Subject "Neuronal activity"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 4009 Magneto-electric nanoparticles (MENs) cobalt ferrite-barrium titanate (CoFe2O4–BaTiO3) for non-invasive neuromodulation(Cambridge University Press, 2020-07-29) Nguyen, Tyler; Vriesman, Zoe; Andrews, Peter; Masood, Sehban; Stewart, M.; Khizroev, Sakhrat; Jin, Xiaoming; Anesthesia, School of MedicineOBJECTIVES/GOALS: Our goal is to develop a non-invasive stimulation technique using magneto-electric nanoparticles (MENs) for inducing and enhancing neuronal activity with high spatial and temporal resolutions and minimal toxicity, which can potentially be used as a more effective approach to brain stimulation. METHODS/STUDY POPULATION: MENs compose of core-shell structures that are attracted to strong external magnetic field (~5000 Gauss) but produces electric currents with weaker magnetic field (~450 Gauss). MENs were IV treated into mice and drawn to the brain cortex with a strong magnetic field. We then stimulate MENs with a weaker magnetic field via electro magnet. With two photon calcium imaging, we investigated both the temporal and spatial effects of MENs on neuronal activity both in vivo and in vitro. We performed mesoscopic whole brain calcium imaging on awake animal to assess the MENs effects. Furthermore, we investigated the temporal profile of MENs in the vasculatures post-treatment and its toxicities to CNS. RESULTS/ANTICIPATED RESULTS: MENs were successfully localized to target cortical regions within 30 minutes of magnetic application. After wirelessly applying ~450 G magnetic field between 10-20 Hz, we observed a dramatic increase of calcium signals (i.e. neuronal excitability) both in vitro cultured neurons and in vivo treated animals. Whole brain imaging of awake mice showed a focal increase in calcium signals at the area where MENs localized and the signals spread to regions further away. We also found MENs stimulatory effects lasted up to 24 hours post treatment. MEN stimulation increases c-Fos expression but resulted in no inflammatory changes, up to one week, by assessing microglial or astrocytes activations. DISCUSSION/SIGNIFICANCE OF IMPACT: Our study shows, through controlling the applied magnetic field, MENs can be focally delivered to specific cortical regions with high efficacy and wirelessly activated neurons with high spatial and temporal resolution. This method shows promising potential to be a new non-invasive brain modulation approach disease studies and treatments.Item Activation State-Dependent Substrate Gating in Ca2+/Calmodulin-Dependent Protein Kinase II(Hindawi Publishing Corporation, 2017) Johnson, D. E.; Hudmon, A.; Biochemistry and Molecular Biology, School of MedicineCalcium/calmodulin-dependent protein kinase II (CaMKII) is highly concentrated in the brain where its activation by the Ca2+ sensor CaM, multivalent structure, and complex autoregulatory features make it an ideal translator of Ca2+ signals created by different patterns of neuronal activity. We provide direct evidence that graded levels of kinase activity and extent of T287 (T286α isoform) autophosphorylation drive changes in catalytic output and substrate selectivity. The catalytic domains of CaMKII phosphorylate purified PSDs much more effectively when tethered together in the holoenzyme versus individual subunits. Using multisubstrate SPOT arrays, high-affinity substrates are preferentially phosphorylated with limited subunit activity per holoenzyme, whereas multiple subunits or maximal subunit activation is required for intermediate- and low-affinity, weak substrates, respectively. Using a monomeric form of CaMKII to control T287 autophosphorylation, we demonstrate that increased Ca2+/CaM-dependent activity for all substrates tested, with the extent of weak, low-affinity substrate phosphorylation governed by the extent of T287 autophosphorylation. Our data suggest T287 autophosphorylation regulates substrate gating, an intrinsic property of the catalytic domain, which is amplified within the multivalent architecture of the CaMKII holoenzyme.Item Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain Injury In Vivo(Mary Ann Liebert, Inc., 2016-02-15) Ping, Xingjie; Jin, Xiaoming; Department of Anatomy & Cell Biology, IU School of MedicineTraumatic brain injury (TBI) often results in structural damage and a loss of neurons that is commonly accompanied by early changes in neuronal electrical activity. Loss of neuronal activity has been hypothesized to contribute to post-traumatic epileptogenesis through the regulation of homeostatic plasticity. The existence of activity loss in cortical neurons after TBI and its subsequent transition into hyperactivity over time is not well characterized, however, particularly in models of TBI in vivo. In the current study, changes in neuronal activity in the primary motor cortex after moderate controlled cortical impact (CCI) in mice were studied using a single-unit recording technique in vivo. Recordings were made at different time points after CCI from cortical layer V pyramidal neurons that were within 1-2 mm from the anterior edge of the injured foci. Within 1-4 h after CCI, the frequency of spontaneous single-unit activity depressed significantly, with the mean firing frequency decreasing from 2.59 ± 0.18 Hz in the sham group to 1.05 ± 0.20 Hz of the injured group. The firing frequencies recovered to the normal level at 1 day and 7 days post-CCI, but became significantly higher at 3 days and 14 days post-CCI. The results suggest that TBI caused initial loss of activity in neurons of the perilesional cortical region, which was followed by compensatory recovery and enhancement of activity. These time-dependent changes in neuronal activity may contribute to the development of hyperexcitability through homeostatic activity regulation.