- Browse by Subject
Browsing by Subject "Neural networks"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Concept embedding-based weighting scheme for biomedical text clustering and visualization(BioMed Central, 2018-11-01) Luo, Xiao; Shah, Setu; Computer Information and Graphics Technology, School of Engineering and TechnologyBiomedical text clustering is a text mining technique used to provide better document search, browsing, and retrieval in biomedical and clinical text collections. In this research, the document representation based on the concept embedding along with the proposed weighting scheme is explored. The concept embedding is learned through the neural networks to capture the associations between the concepts. The proposed weighting scheme makes use of the concept associations to build document vectors for clustering. We evaluate two types of concept embedding and new weighting scheme for text clustering and visualization on two different biomedical text collections. The returned results demonstrate that the concept embedding along with the new weighting scheme performs better than the baseline tf–idf for clustering and visualization. Based on the internal clustering evaluation metric-Davies–Bouldin index and the visualization, the concept embedding generated from aggregated word embedding can form well-separated clusters, whereas the intact concept embedding can better identify more clusters of specific diseases and gain better F-measure.Item Deep Brain Dynamics and Images Mining for Tumor Detection and Precision Medicine(2023-08) Ramesh, Lakshmi; Zhang, Qingxue; King, Brian; Chen, YaobinAutomatic brain tumor segmentation in Magnetic Resonance Imaging scans is essential for the diagnosis, treatment, and surgery of cancerous tumors. However, identifying the hardly detectable tumors poses a considerable challenge, which are usually of different sizes, irregular shapes, and vague invasion areas. Current advancements have not yet fully leveraged the dynamics in the multiple modalities of MRI, since they usually treat multi-modality as multi-channel, and the early channel merging may not fully reveal inter-modal couplings and complementary patterns. In this thesis, we propose a novel deep cross-attention learning algorithm that maximizes the subtle dynamics mining from each of the input modalities and then boosts feature fusion capability. More specifically, we have designed a Multimodal Cross-Attention Module (MM-CAM), equipped with a 3D Multimodal Feature Rectification and Feature Fusion Module. Extensive experiments have shown that the proposed novel deep learning architecture, empowered by the innovative MM-CAM, produces higher-quality segmentation masks of the tumor subregions. Further, we have enhanced the algorithm with image matting refinement techniques. We propose to integrate a Progressive Refinement Module (PRM) and perform Cross-Subregion Refinement (CSR) for the precise identification of tumor boundaries. A Multiscale Dice Loss was also successfully employed to enforce additional supervision for the auxiliary segmentation outputs. This enhancement will facilitate effectively matting-based refinement for medical image segmentation applications. Overall, this thesis, with deep learning, transformer-empowered pattern mining, and sophisticated architecture designs, will greatly advance deep brain dynamics and images mining for tumor detection and precision medicine.Item Distance-weighted Sinkhorn loss for Alzheimer's disease classification(Elsevier, 2024-02-12) Wang, Zexuan; Zhan, Qipeng; Tong, Boning; Yang, Shu; Hou, Bojian; Huang, Heng; Saykin, Andrew J.; Thompson, Paul M.; Davatzikos, Christos; Shen, Li; Radiology and Imaging Sciences, School of MedicineTraditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.Item Futuristic Air Compressor System Design and Operation by Using Artificial Intelligence(2018-12) Bahrami Asl, Babak; Razban, Ali; Chen, Jie; Goodman, David W.The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.Item Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods(MDPI, 2021-04-19) Vasile, Corina Maria; Udriștoiu, Anca Loredana; Ghenea, Alice Elena; Popescu, Mihaela; Gheonea, Cristian; Niculescu, Carmen Elena; Ungureanu, Anca Marilena; Udriștoiu, Ștefan; Drocaş, Andrei Ioan; Gruionu, Lucian Gheorghe; Gruionu, Gabriel; Iacob, Andreea Valentina; Alexandru, Dragoş Ovidiu; Medicine, School of MedicineBackground and Objectives: At present, thyroid disorders have a great incidence in the worldwide population, so the development of alternative methods for improving the diagnosis process is necessary. Materials and Methods: For this purpose, we developed an ensemble method that fused two deep learning models, one based on convolutional neural network and the other based on transfer learning. For the first model, called 5-CNN, we developed an efficient end-to-end trained model with five convolutional layers, while for the second model, the pre-trained VGG-19 architecture was repurposed, optimized and trained. We trained and validated our models using a dataset of ultrasound images consisting of four types of thyroidal images: autoimmune, nodular, micro-nodular, and normal. Results: Excellent results were obtained by the ensemble CNN-VGG method, which outperformed the 5-CNN and VGG-19 models: 97.35% for the overall test accuracy with an overall specificity of 98.43%, sensitivity of 95.75%, positive and negative predictive value of 95.41%, and 98.05%. The micro average areas under each receiver operating characteristic curves was 0.96. The results were also validated by two physicians: an endocrinologist and a pediatrician. Conclusions: We proposed a new deep learning study for classifying ultrasound thyroidal images to assist physicians in the diagnosis process.Item Neural networks for mining the associations between diseases and symptoms in clinical notes(Springer, 2018-11-28) Shah, Setu; Luo, Xiao; Kanakasabai, Saravanan; Tuason, Ricardo; Klopper, Gregory; Engineering Technology, School of Engineering and TechnologyThere are challenges for analyzing the narrative clinical notes in Electronic Health Records (EHRs) because of their unstructured nature. Mining the associations between the clinical concepts within the clinical notes can support physicians in making decisions, and provide researchers evidence about disease development and treatment. In this paper, in order to model and analyze disease and symptom relationships in the clinical notes, we present a concept association mining framework that is based on word embedding learned through neural networks. The approach is tested using 154,738 clinical notes from 500 patients, which are extracted from the Indiana University Health’s Electronic Health Records system. All patients are diagnosed with more than one type of disease. The results show that this concept association mining framework can identify related diseases and symptoms. We also propose a method to visualize a patients’ diseases and related symptoms in chronological order. This visualization can provide physicians an overview of the medical history of a patient and support decision making. The presented approach can also be expanded to analyze the associations of other clinical concepts, such as social history, family history, medications, etc.Item RCID: Fingerprinting Passive RFID Tags via Wideband Backscatter(IEEE, 2022) Li, Jiawei; Li, Ang; Han, Dianqi; Zhang, Yan; Li, Tao; Zang, Yanchao; Computer and Information Science, Purdue School of ScienceTag cloning and spoofing pose great challenges to RFID applications. This paper presents the design and evaluation of RCID, a novel system to fingerprint RFID tags based on the unique reflection coefficient of each tag circuit. Based on a novel OFDM-based fingerprint collector, our system can quickly acquire and verify each tag’s RCID fingerprint which are independent of the RFID reader and measurement environment. Our system applies to COTS RFID tags and readers after a firmware update at the reader. Extensive prototyped experiments on 600 tags confirm that RCID is highly secure with the authentication accuracy up to 97.15% and the median authentication error rate equal to 1.49%. RCID is also highly usable because it only takes about 8 s to enroll a tag and 2 ms to verify an RCID fingerprint with a fully connected multi-class neural network. Finally, empirical studies demonstrate that the entropy of an RCID fingerprint is about 202 bits over a bandwidth of 20 MHz in contrast to the best prior result of 17 bits, thus offering strong theoretical resilience to RFID cloning and spoofing.Item SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer(Frontiers Media, 2019-03-08) Huang, Zhi; Zhan, Xiaohui; Xiang, Shunian; Johnson, Travis S.; Helm, Bryan; Yu, Christina Y.; Zhang, Jie; Salama, Paul; Rizkalla, Maher; Han, Zhi; Huang, Kun; Department of Medicine, Indiana University School of MedicineImproved cancer prognosis is a central goal for precision health medicine. Though many models can predict differential survival from data, there is a strong need for sophisticated algorithms that can aggregate and filter relevant predictors from increasingly complex data inputs. In turn, these models should provide deeper insight into which types of data are most relevant to improve prognosis. Deep Learning-based neural networks offer a potential solution for both problems because they are highly flexible and account for data complexity in a non-linear fashion. In this study, we implement Deep Learning-based networks to determine how gene expression data predicts Cox regression survival in breast cancer. We accomplish this through an algorithm called SALMON (Survival Analysis Learning with Multi-Omics Neural Networks), which aggregates and simplifies gene expression data and cancer biomarkers to enable prognosis prediction. The results revealed improved performance when more omics data were used in model construction. Rather than use raw gene expression values as model inputs, we innovatively use eigengene modules from the result of gene co-expression network analysis. The corresponding high impact co-expression modules and other omics data are identified by feature selection technique, then examined by conducting enrichment analysis and exploiting biological functions, escalated the interpretation of input feature from gene level to co-expression modules level. Our study shows the feasibility of discovering breast cancer related co-expression modules, sketch a blueprint of future endeavors on Deep Learning-based survival analysis. SALMON source code is available at https://github.com/huangzhii/SALMON/.Item Using natural language processing to classify social work interventions(Managed Care & Healthcare Communications, 2021-01-01) Bako, Abdulaziz Tijjani; Taylor, Heather L.; Wiley, Kevin, Jr.; Zheng, Jiaping; Walter-McCabe, Heather; Kasthurirathne, Suranga N.; Vest, Joshua R.; Health Policy and Management, School of Public HealthObjectives: Health care organizations are increasingly employing social workers to address patients' social needs. However, social work (SW) activities in health care settings are largely captured as text data within electronic health records (EHRs), making measurement and analysis difficult. This study aims to extract and classify, from EHR notes, interventions intended to address patients' social needs using natural language processing (NLP) and machine learning (ML) algorithms. Study design: Secondary data analysis of a longitudinal cohort. Methods: We extracted 815 SW encounter notes from the EHR system of a federally qualified health center. We reviewed the literature to derive a 10-category classification scheme for SW interventions. We applied NLP and ML algorithms to categorize the documented SW interventions in EHR notes according to the 10-category classification scheme. Results: Most of the SW notes (n = 598; 73.4%) contained at least 1 SW intervention. The most frequent interventions offered by social workers included care coordination (21.5%), education (21.0%), financial planning (18.5%), referral to community services and organizations (17.1%), and supportive counseling (15.3%). High-performing classification algorithms included the kernelized support vector machine (SVM) (accuracy, 0.97), logistic regression (accuracy, 0.96), linear SVM (accuracy, 0.95), and multinomial naive Bayes classifier (accuracy, 0.92). Conclusions: NLP and ML can be utilized for automated identification and classification of SW interventions documented in EHRs. Health care administrators can leverage this automated approach to gain better insight into the most needed social interventions in the patient population served by their organizations. Such information can be applied in managerial decisions related to SW staffing, resource allocation, and patients' social needs.