ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "NIST mass spectral library"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Compound Identification Using Partial and Semi-partial Correlations for Gas Chromatography Mass Spectrometry Data
    (ACS, 2012) Kim, Seongho; Koo, Imhoi; Jeong, Jaesik; Wu, Shiwen; Shi, Xue; Zhang, Xiang; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Compound identification is a key component of data analysis in the applications of gas chromatography-mass spectrometry (GC-MS). Currently, the most widely used compound identification is mass spectrum matching, in which the dot product and its composite version are employed as spectral similarity measures. Several forms of transformations for fragment ion intensities have also been proposed to increase the accuracy of compound identification. In this study, we introduced partial and semipartial correlations as mass spectral similarity measures and applied them to identify compounds along with different transformations of peak intensity. The mixture versions of the proposed method were also developed to further improve the accuracy of compound identification. To demonstrate the performance of the proposed spectral similarity measures, the National Institute of Standards and Technology (NIST) mass spectral library and replicate spectral library were used as the reference library and the query spectra, respectively. Identification results showed that the mixture partial and semipartial correlations always outperform both the dot product and its composite measure. The mixture similarity with semipartial correlation has the highest accuracy of 84.6% in compound identification with a transformation of (0.53,1.3) for fragment ion intensity and m/z value, respectively.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University