- Browse by Subject
Browsing by Subject "Multiple organ dysfunction syndrome"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Detrimental effects of PCSK9 loss-of-function in the pediatric host response to sepsis are mediated through independent influence on Angiopoietin-1(BMC, 2023-06-26) Atreya, Mihir R.; Cvijanovich, Natalie Z.; Fitzgerald, Julie C.; Weiss, Scott L.; Bigham, Michael T.; Jain, Parag N.; Schwarz, Adam J.; Lutfi, Riad; Nowak, Jeffrey; Allen, Geoffrey L.; Thomas, Neal J.; Grunwell, Jocelyn R.; Baines, Torrey; Quasney, Michael; Haileselassie, Bereketeab; Alder, Matthew N.; Lahni, Patrick; Ripberger, Scarlett; Ekunwe, Adesuwa; Campbell, Kyle R.; Walley, Keith R.; Standage, Stephen W.; Pediatrics, School of MedicineBackground: Sepsis is associated with significant mortality. Yet, there are no efficacious therapies beyond antibiotics. PCSK9 loss-of-function (LOF) and inhibition, through enhanced low-density lipoprotein receptor (LDLR) mediated endotoxin clearance, holds promise as a potential therapeutic approach among adults. In contrast, we have previously demonstrated higher mortality in the juvenile host. Given the potential pleiotropic effects of PCSK9 on the endothelium, beyond canonical effects on serum lipoproteins, both of which may influence sepsis outcomes, we sought to test the influence of PCSK9 LOF genotype on endothelial dysfunction. Methods: Secondary analyses of a prospective observational cohort of pediatric septic shock. Genetic variants of PCSK9 and LDLR genes, serum PCSK9, and lipoprotein concentrations were determined previously. Endothelial dysfunction markers were measured in day 1 serum. We conducted multivariable linear regression to test the influence of PCSK9 LOF genotype on endothelial markers, adjusted for age, complicated course, and low- and high-density lipoproteins (LDL and HDL). Causal mediation analyses to test impact of select endothelial markers on the association between PCSK9 LOF genotype and mortality. Juvenile Pcsk9 null and wildtype mice were subject to cecal slurry sepsis and endothelial markers were quantified. Results: A total of 474 patients were included. PCSK9 LOF was associated with several markers of endothelial dysfunction, with strengthening of associations after exclusion of those homozygous for the rs688 LDLR variant that renders it insensitive to PCSK9. Serum PCSK9 was not correlated with endothelial dysfunction. PCSK9 LOF influenced concentrations of Angiopoietin-1 (Angpt-1) upon adjusting for potential confounders including lipoprotein concentrations, with false discovery adjusted p value of 0.042 and 0.013 for models that included LDL and HDL, respectively. Causal mediation analysis demonstrated that the effect of PCSK9 LOF on mortality was mediated by Angpt-1 (p = 0.0008). Murine data corroborated these results with lower Angpt-1 and higher soluble thrombomodulin among knockout mice with sepsis relative to the wildtype. Conclusions: We present genetic and biomarker association data that suggest a potential direct role of the PCSK9-LDLR pathway on Angpt-1 in the developing host with septic shock and warrant external validation. Further, mechanistic studies on the role of PCSK9-LDLR pathway on vascular homeostasis may lead to the development of pediatric-specific sepsis therapies.Item External validation and biomarker assessment of a high-risk, data-driven pediatric sepsis phenotype characterized by persistent hypoxemia, encephalopathy, and shock(Research Square, 2023-08-02) Atreya, Mihir R.; Bennett, Tellen D.; Geva, Alon; Faustino, E. Vincent S.; Rogerson, Colin M.; Lutfi, Riad; Cvijanovich, Natalie Z.; Bigham, Michael T.; Nowak, Jeffrey; Schwarz, Adam J.; Baines, Torrey; Haileselassie, Bereketeab; Thomas, Neal J.; Luo, Yuan; Sanchez-Pinto, L. Nelson; Novel Data-Driven Sepsis Phenotypes in Children Study and the Genomics of Pediatric Septic Shock Investigators; Pediatrics, School of MedicineObjective: Identification of children with sepsis-associated multiple organ dysfunction syndrome (MODS) at risk for poor outcomes remains a challenge. Data-driven phenotyping approaches that leverage electronic health record (EHR) data hold promise given the widespread availability of EHRs. We sought to externally validate the data-driven 'persistent hypoxemia, encephalopathy, and shock' (PHES) phenotype and determine its association with inflammatory and endothelial biomarkers, as well as biomarker-based pediatric risk-strata. Design: We trained and validated a random forest classifier using organ dysfunction subscores in the EHR dataset used to derive the PHES phenotype. We used the classifier to assign phenotype membership in a test set consisting of prospectively enrolled pediatric septic shock patients. We compared biomarker profiles of those with and without the PHES phenotype and determined the association with established biomarker-based mortality and MODS risk-strata. Setting: 25 pediatric intensive care units (PICU) across the U.S. Patients: EHR data from 15,246 critically ill patients sepsis-associated MODS and 1,270 pediatric septic shock patients in the test cohort of whom 615 had biomarker data. Interventions: None. Measurements and main results: The area under the receiver operator characteristic curve (AUROC) of the new classifier to predict PHES phenotype membership was 0.91(95%CI, 0.90-0.92) in the EHR validation set. In the test set, patients with the PHES phenotype were independently associated with both increased odds of complicated course (adjusted odds ratio [aOR] of 4.1, 95%CI: 3.2-5.4) and 28-day mortality (aOR of 4.8, 95%CI: 3.11-7.25) after controlling for age, severity of illness, and immuno-compromised status. Patients belonging to the PHES phenotype were characterized by greater degree of systemic inflammation and endothelial activation, and overlapped with high risk-strata based on PERSEVERE biomarkers predictive of death and persistent MODS. Conclusions: The PHES trajectory-based phenotype is reproducible, independently associated with poor clinical outcomes, and overlap with higher risk-strata based on validated biomarker approaches.Item Integrated PERSEVERE and endothelial biomarker risk model predicts death and persistent MODS in pediatric septic shock: a secondary analysis of a prospective observational study(BMC, 2022-07-11) Atreya, Mihir R.; Cvijanovich, Natalie Z.; Fitzgerald, Julie C.; Weiss, Scott L.; Bigham, Michael T.; Jain, Parag N.; Schwarz, Adam J.; Lutfi, Riad; Nowak, Jeffrey; Allen, Geoffrey L.; Thomas, Neal J.; Grunwell, Jocelyn R.; Baines, Torrey; Quasney, Michael; Haileselassie, Bereketeab; Lindsell, Christopher J.; Alder, Matthew N.; Wong, Hector R.; Pediatrics, School of MedicineBackground: Multiple organ dysfunction syndrome (MODS) is a critical driver of sepsis morbidity and mortality in children. Early identification of those at risk of death and persistent organ dysfunctions is necessary to enrich patients for future trials of sepsis therapeutics. Here, we sought to integrate endothelial and PERSEVERE biomarkers to estimate the composite risk of death or organ dysfunctions on day 7 of septic shock. Methods: We measured endothelial dysfunction markers from day 1 serum among those with existing PERSEVERE data. TreeNet® classification model was derived incorporating 22 clinical and biological variables to estimate risk. Based on relative variable importance, a simplified 6-biomarker model was developed thereafter. Results: Among 502 patients, 49 patients died before day 7 and 124 patients had persistence of MODS on day 7 of septic shock. Area under the receiver operator characteristic curve (AUROC) for the newly derived PERSEVEREnce model to predict death or day 7 MODS was 0.93 (0.91-0.95) with a summary AUROC of 0.80 (0.76-0.84) upon tenfold cross-validation. The simplified model, based on IL-8, HSP70, ICAM-1, Angpt2/Tie2, Angpt2/Angpt1, and Thrombomodulin, performed similarly. Interaction between variables-ICAM-1 with IL-8 and Thrombomodulin with Angpt2/Angpt1-contributed to the models' predictive capabilities. Model performance varied when estimating risk of individual organ dysfunctions with AUROCS ranging from 0.91 to 0.97 and 0.68 to 0.89 in training and test sets, respectively. Conclusions: The newly derived PERSEVEREnce biomarker model reliably estimates risk of death or persistent organ dysfunctions on day 7 of septic shock. If validated, this tool can be used for prognostic enrichment in future pediatric trials of sepsis therapeutics.Item Serum Soluble Endoglin in Pediatric Septic Shock Associated Multiple Organ Dysfunction Syndrome(Wolters Kluwer, 2023) Atreya, Mihir R.; Cvijanovich, Natalie Z.; Fitzgerald, Julie C.; Weiss, Scott L.; Bigham, Michael T.; Jain, Parag N.; Schwarz, Adam J.; Lutfi, Riad; Nowak, Jeffrey; Thomas, Neal J.; Quasney, Michael; Haileselassie, Bereketeab; Baines, Torrey D.; Zingarelli, Basilia; Genomics of Pediatric Septic Shock Investigators; Pediatrics, School of MedicineBackground: Endothelial activation is a key driver of multiple organ dysfunction syndrome (MODS). Soluble endoglin (sENG) is expressed by mature and progenitor endothelial cells and thought to have angiogenic properties. We sought to determine the association between sENG and pediatric sepsis associated MODS. Methods: Prospective observational study of pediatric septic shock. Primary outcome of interest was complicated course -a composite of death by (or) MODS on day 7 of illness. Secondary outcomes included individual organ dysfunctions. Endothelial biomarkers including sENG were measured using multiplex Luminex assays among patients with existing data on pediatric sepsis biomarker risk model data (PERSEVERE-II). Multivariable regression was used to test the independent association between sENG and clinical outcomes. Serum sENG concentrations across PERSEVERE-II mortality risk strata and correlations with established markers of endothelial dysfunction. Results: 306 critically ill children with septic shock were included. Serum sENG concentrations were higher among those with primary and secondary outcomes of interest, with the exception of acute neurological dysfunction. sENG was independently associated with increased odds of complicated course [adj OR 1.53 (95% CI: 1.02–2.27), p=0.038] and acute renal dysfunction [adj OR 1.84 (95%CI: 1.18–2.876), p=0.006]. sENG demonstrated graded responses across PERSEVERE-II risk strata and was positively correlated with endothelial biomarkers, except Angiopoietin-1. Conclusions: Serum soluble endoglin is independently associated with complicated course and acute renal dysfunction in pediatric septic shock. Future studies are required to validate our observational data and mechanistic studies are necessary to elucidate whether endoglin plays a organ-specific role in development or resolution of acute renal dysfunction in sepsis.Item The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma(Mary Ann Liebert, 2021) Bonaroti, Jillian; Abdelhamid, Sultan; Kar, Upendra; Sperry, Jason; Zamora, Ruben; Namas, Rami Ahmd; McKinley, Todd; Vodovotz, Yoram; Billiar, Timothy; Orthopaedic Surgery, School of MedicineSignificance: The immunoinflammatory responses that follow trauma contribute to clinical trajectory and patient outcomes. While remarkable advances have been made in trauma services and injury management, clarity on how the immune system in humans responds to trauma is lagging. Recent Advances: Multiplexing platforms have transformed our ability to analyze comprehensive immune mediator responses in human trauma. In parallel, with the establishment of large data sets, computational methods have been adapted to yield new insights based on mediator patterns. These efforts have added an important data layer to the emerging multiomic characterization of the human response to injury. Critical Issues: Outcome after trauma is greatly affected by the host immunoinflammatory response. Excessive or sustained responses can contribute to organ damage. Hence, understanding the pathophysiology behind traumatic injury is of vital importance. Future Directions: This review summarizes our work in the study of circulating immune mediators in trauma patients. Our foundational studies into dynamic patterns of inflammatory mediators represent an important contribution to the concepts and computational challenges that these large data sets present. We hope to see further integration and understanding of multiomics strategies in the field of trauma that can aid in patient endotyping and in potentially identifiying certain therapeutic targets in the future.