- Browse by Subject
Browsing by Subject "Mesenchymal stem cells"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item Adipose-derived Stem Cell Conditioned Media Extends Survival time of a mouse model of Amyotrophic Lateral Sclerosis(Nature Publishing Group, 2015-11-20) Fontanilla, Christine V.; Gu, Huiying; Liu, Qingpeng; Zhu, Timothy Z.; Johnstone, Brian H.; March, Keith L.; Pascuzzi, Robert M.; Farlow, Martin R.; Du, Yansheng; Department of Neurology, IU School of MedicineAdipose stromal cells (ASC) secrete various trophic factors that assist in the protection of neurons in a variety of neuronal death models. In this study, we tested the effects of human ASC conditional medium (ASC-CM) in human amyotrophic lateral sclerosis (ALS) transgenic mouse model expressing mutant superoxide dismutase (SOD1(G93A)). Treating symptomatic SOD1(G93A) mice with ASC-CM significantly increased post-onset survival time and lifespan. Moreover, SOD1(G93A) mice given ASC-CM treatment showed high motor neuron counts, less activation of microglia and astrocytes at an early symptomatic stage in the spinal cords under immunohistochemical analysis. SOD1(G93A) mice treated with ASC-CM for 7 days showed reduced levels of phosphorylated p38 (pp38) in the spinal cord, a mitogen-activated protein kinase that is involved in both inflammation and neuronal death. Additionally, the levels of α-II spectrin in spinal cords were also inhibited in SOD1(G93A) mice treated with ASC-CM for 3 days. Interestingly, nerve growth factor (NGF), a neurotrophic factor found in ASC-CM, played a significant role in the protection of neurodegeneration inSOD1(G93A) mouse. These results indicate that ASC-CM has the potential to develop into a novel and effective therapeutic treatment for ALS.Item Aging-Related Reduced Expression of CXCR4 on Bone Marrow Mesenchymal Stromal Cells Contributes to Hematopoietic Stem and Progenitor Cell Defects(SpringerLink, 2020-08) Singh, Pratibha; Kacena, Melissa A.; Orschell, Christie M.; Pelus, Louis M.; Microbiology and Immunology, School of MedicineAging impairs the regenerative potential of hematopoietic stem cells (HSC) and skews differentiation towards the myeloid lineage. The bone marrow (BM) microenvironment has recently been suggested to influence HSC aging, however the mechanisms whereby BM stromal cells mediate this effect is unknown. Here we show that aging-associated decreased expression of CXCR4 expression on BM mesenchymal stem cells (MSC) plays a crucial role in the development of the hematopoietic stem and progenitor cells (HSPC) aging phenotype. The BM MSC from old mice was sufficient to drive a premature aging phenotype of young HSPC when cultured together ex vivo. The impaired ability of old MSC to support HSPC function is associated with reduced expression of CXCR4 on BM MSC of old mice. Deletion of the CXCR4 gene in young MSC accelerates an aging phenotype in these cells characterized by increased production of reactive oxygen species (ROS), DNA damage, senescence, and reduced proliferation. Culture of HSPC from young mice with CXCR4 deficient MSC also from young mice led to a premature aging phenotype in the young HSPC, as evidenced by reduced hematopoietic regeneration and enhanced myeloid differentiation. Mechanistically, CXCR4 signaling prevents BM MSC dysfunction by suppressing oxidative stress, as treatment of old or CXCR4 deficient MSC with N-acetyl-L-cysteine (NAC), improved their niche supporting activity, and attenuated the HSPC aging phenotype. Our studies suggest that age-associated reduction in CXCR4 expression on BM MSC impairs hematopoietic niche activity with increased ROS production, driving an HSC aging phenotype. Thus, modulation of the SDF-1/CXCR4 axis in MSC may lead to novel interventions to alleviate the age-associated decline in immune/hematopoietic function.Item Cell Mechanosensitivity to Extremely Low Magnitude Signals is Enabled by a LINCed Nucleus(Wiley, 2015-06) Uzer, Gunes; Thompson, William R.; Sen, Buer; Xie, Zhihui; Yen, Sherwin S.; Miller, Sean; Bas, Guniz; Styner, Maya; Rubin, Clinton T.; Judex, Stefan; Burridge, Keith; Rubin, Janet; Physical Therapy, School of Health and Rehabilitation SciencesA cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain (<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal initiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.Item Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly(Elsevier, 2022) Jiang, Zhongliang; Lin, Fang-Yi; Jiang, Kun; Nguyen, Han; Chang, Chun-Yi; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyMesenchymal stem cells (MSCs)-based therapies have been widely used to promote tissue regeneration and to modulate immune/inflammatory response. The therapeutic potential of MSCs can be further improved by forming multi-cellular spheroids. Meanwhile, hydrogels with macroporous structures are advantageous for improving mass transport properties for the cell-laden matrices. Herein, we report the fabrication of MSC-laden macroporous hydrogel scaffolds through incorporating rapidly dissolvable spherical cell-laden microgels. Dissolvable microgels were fabricated by tandem droplet-microfluidics and thiol-norbornene photopolymerization using a novel fast-degrading macromer poly(ethylene glycol)-norbornene-dopamine (PEGNB-Dopa). The cell-laden microgels were subsequently encapsulated within another bulk hydrogel matrix, whose porous structure was generated efficiently by the rapid degradation of the PEGNB-Dopa microgels. The cytocompatibility of this in situ pore-forming approach was demonstrated with multiple cell types. Furthermore, adjusting the stiffness and cell adhesiveness of the bulk hydrogels afforded the formation of solid cell spheroids or hollow spheres. The assembly of solid or hollow MSC spheroids led to differential activation of AKT pathway. Finally, MSCs solid spheroids formed in situ within the macroporous hydrogels exhibited robust secretion of HGF, VEGF-A, IL-6, IL-8, and TIMP-2. In summary, this platform provides an innovative method for forming cell-laden macroporous hydrogels for a variety of future biomedical applications.Item Dynamic chromatin accessibility and transcriptome changes following PDGF-BB treatment of bone-marrow derived mesenchymal stem cells(Springer Nature, 2024-10-15) Liu, Sheng; Chu, Xiaona; Reiter, Jill L.; Yu, Xuhong; Fang, Fang; McGuire, Patrick; Gao, Hongyu; Liu, Yunlong; Wan, Jun; Wang, Yue; Medical and Molecular Genetics, School of MedicineBackground: Mesenchymal stem cells (MSCs) are multipotent stem cells that are under investigation for use in clinical trials because they are capable of self-renewal and differentiating into different cell types under defined conditions. Nonetheless, the therapeutic effects of MSCs have been constrained by low engraftment rates, cell fusion, and cell survival. Various strategies have been explored to improve the therapeutic efficacy of MSCs, with platelet-derived growth factor (PDGF)-BB emerging as a promising candidate. To enhance our comprehension of the impact of PDGF-BB on the gene expression profile and chromosomal accessibility of MSCs, RNA-sequencing and analysis of chromatin accessibility profiles were conducted on three human primary MSCs in culture, both with and without stimulation by PDGF-BB. Results: Integrative analysis of gene expression and chromatin accessibility demonstrated that PDGF-BB treatment modified the chromatin accessibility landscape, marking regions for activation or repression through the AP-1 family transcription factors TEAD, CEBP, and RUNX2. These changes in AP-1 transcription factor expression, in turn, led to cell proliferation and differentiation potential towards osteoblasts, adipocytes, or chondrocytes. The degree of MSC differentiation varies among cells isolated from different donors. The presence of an enrichment of exosome-related genes is also noted among all the differentially expressed genes. Conclusions: In conclusion, the observed changes in AP-1 transcription factor expression not only induced cellular proliferation and differentiation, but also revealed variations in the degree of MSC differentiation based on donor-specific differences. Moreover, the enrichment of exosome-related genes among differentially expressed genes suggests a potential significant role for PDGF-BB in facilitating intercellular communication.Item Dysfunctional stem and progenitor cells impair fracture healing with age(Baishideng Publishing Group, 2019-06-26) Wagner, Diane R.; Karnik, Sonali; Gunderson, Zachary J.; Nielsen, Jeffery J.; Fennimore, Alanna; Promer, Hunter J.; Lowery, Jonathan W.; Loghmani, M. Terry; Low, Philip S.; McKinley, Todd O.; Kacena, Melissa A.; Clauss, Matthias; Li, Jiliang; Orthopaedic Surgery, IU School of MedicineSuccessful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.Item Editorial: Advanced neural stem cell therapies for spinal cord injury(Frontiers Media, 2024-08-06) Katari, Venkatesh; Pasupuleti, Santhosh Kumar; Mullick, Madhubanti; Reddy Lekkala, Vinod Kumar; Sen, Dwaipayan; Pediatrics, School of MedicineItem Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation(Springer Nature, 2021-11-19) Prideaux, Matthew; Wright, Christian S.; Noonan, Megan L.; Yi, Xin; Clinkenbeard, Erica L.; Mevel, Elsa; Wheeler, Jonathan A.; Byers, Sharon; Wijenayaka, Asiri R.; Gronthos, Stan; Sankar, Uma; White, Kenneth E.; Atkins, Gerald J.; Thompson, William R.; Physical Therapy, School of Health and Human SciencesMesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.Item Impact of ALCAM (CD166) on homing of hematopoietic stem and progenitor cells(2012-12-18) Aleksandrova, Mariya Aleksandrova; Goebl, Mark G.; Srour, Edward F.; Hurley, Thomas D., 1961-The potential of hematopoietic stem cells (HSC) to home and to anchor within the bone marrow (BM) microenvironment controls the ability of transplanted HSCs to establish normal hematopoiesis. Activated Leukocyte Cell Adhesion Molecule (ALCAM; also identified as CD166), which participates in homophilic interactions, is expressed on a group of osteoblasts in the hematopoietic niche capable of sustaining functional HSC in vitro. Since we could also detect ALCAM expression on HSC, we suspect that ALCAM may play a role in anchoring primitive hematopoietic cells to ALCAM expressing components of the hematopoietic niche via dimerization. We investigated the role of ALCAM on the homing abilities of hematopoietic stem and progenitor cells (HSPC) by calculating recovery frequency of Sca-1+ALCAM+ cells in an in vivo murine bone marrow transplantation model. Our data supports the notion that ALCAM promotes improved homing potential of hematopoietic Sca-1+ cells. Recovery of BM-homed Sca-1+ cells from the endosteal region was 1.8-fold higher than that of total donor cells. However, a 3.0-fold higher number of Sca-1+ALCAM+ cells homed to the endosteal region compared to total donor cells. Similarly, homed Sca-1+ALCAM+ cells were recovered from the vascular region at 2.1-fold greater frequency than total homed donor cells from that region, compared to only a 1.3-fold increase in the recovery frequency of Sca-1+ cells. In vitro quantitation of clonogenic BM-homed hematopoietic progenitors corroborate the results from the homing assay. The frequency of in vitro clonogenic progenitors was significantly higher among endosteal-homed Sca-1+ALCAM+ cells compared to other fractions of donor cells. Collectively, these data demonstrate that engrafting HSC expressing ALCAM home more efficiently to the BM and within the BM microenvironment, these cells preferentially seed the endosteal niche.
- «
- 1 (current)
- 2
- 3
- »