- Browse by Subject
Browsing by Subject "Markov chain Monte Carlo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Markov chain Monte Carlo method for estimating the statistical significance of proteoform identifications by top-down mass spectrometry(ACS, 2019-03) Kou, Qiang; Wang, Zhe; Lubeckyj, Rachele A.; Wu, Si; Liu, Xiaowen; BioHealth Informatics, School of Informatics and ComputingTop-down mass spectrometry is capable of identifying whole proteoform sequences with multiple post-translational modifications because it generates tandem mass spectra directly from intact proteoforms. Many software tools, such as ProSightPC, MSPathFinder, and TopMG, have been proposed for identifying proteoforms with modifications. In these tools, various methods are employed to estimate the statistical significance of identifications. However, most existing methods are designed for proteoform identifications without modifications, and the challenge remains for accurately estimating the statistical significance of proteoform identifications with modifications. Here we propose TopMCMC, a method that combines a Markov chain random walk algorithm and a greedy algorithm for assigning statistical significance to matches between spectra and protein sequences with variable modifications. Experimental results showed that TopMCMC achieved high accuracy in estimating E-values and false discovery rates of identifications in top-down mass spectrometry. Coupled with TopMG, TopMCMC identified more spectra than the generating function method from an MCF-7 top-down mass spectrometry data set.Item Robust Bayesian variable selection for gene–environment interactions(Oxford University Press, 2023) Ren, Jie; Zhou, Fei; Li, Xiaoxi; Ma, Shuangge; Jiang, Yu; Wu, Cen; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthGene-environment (G× E) interactions have important implications to elucidate the etiology of complex diseases beyond the main genetic and environmental effects. Outliers and data contamination in disease phenotypes of G× E studies have been commonly encountered, leading to the development of a broad spectrum of robust regularization methods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in existing studies. We develop a fully Bayesian robust variable selection method for G× E interaction studies. The proposed Bayesian method can effectively accommodate heavy-tailed errors and outliers in the response variable while conducting variable selection by accounting for structural sparsity. In particular, for the robust sparse group selection, the spike-and-slab priors have been imposed on both individual and group levels to identify important main and interaction effects robustly. An efficient Gibbs sampler has been developed to facilitate fast computation. Extensive simulation studies, analysis of diabetes data with single-nucleotide polymorphism measurements from the Nurses' Health Study, and The Cancer Genome Atlas melanoma data with gene expression measurements demonstrate the superior performance of the proposed method over multiple competing alternatives.