- Browse by Subject
Browsing by Subject "Machine Learning"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item 3D Object Detection Using Virtual Environment Assisted Deep Network Training(2020-12) Dale, Ashley S.; Christopher, Lauren; King, Brian; Salama, PaulAn RGBZ synthetic dataset consisting of five object classes in a variety of virtual environments and orientations was combined with a small sample of real-world image data and used to train the Mask R-CNN (MR-CNN) architecture in a variety of configurations. When the MR-CNN architecture was initialized with MS COCO weights and the heads were trained with a mix of synthetic data and real world data, F1 scores improved in four of the five classes: The average maximum F1-score of all classes and all epochs for the networks trained with synthetic data is F1∗ = 0.91, compared to F1 = 0.89 for the networks trained exclusively with real data, and the standard deviation of the maximum mean F1-score for synthetically trained networks is σ∗ = 0.015, compared to σ_F1 = 0.020 for the networks trained exclusively with real F1 data. Various backgrounds in synthetic data were shown to have negligible impact on F1 scores, opening the door to abstract backgrounds and minimizing the need for intensive synthetic data fabrication. When the MR-CNN architecture was initialized with MS COCO weights and depth data was included in the training data, the net- work was shown to rely heavily on the initial convolutional input to feed features into the network, the image depth channel was shown to influence mask generation, and the image color channels were shown to influence object classification. A set of latent variables for a subset of the synthetic datatset was generated with a Variational Autoencoder then analyzed using Principle Component Analysis and Uniform Manifold Projection and Approximation (UMAP). The UMAP analysis showed no meaningful distinction between real-world and synthetic data, and a small bias towards clustering based on image background.Item AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources(2021-08) Kalgaonkar, Priyank B.; El-Sharkawy, Mohamed A.; King, Brian S.; Rizkalla, Maher E.Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.Item Analyzing and evaluating security features in software requirements(2016-10-28) Hayrapetian, Allenoush; Raje, RajeevSoftware requirements, for complex projects, often contain specifications of non-functional attributes (e.g., security-related features). The process of analyzing such requirements for standards compliance is laborious and error prone. Due to the inherent free-flowing nature of software requirements, it is tempting to apply Natural Language Processing (NLP) and Machine Learning (ML) based techniques for analyzing these documents. In this thesis, we propose a novel semi-automatic methodology that assesses the security requirements of the software system with respect to completeness and ambiguity, creating a bridge between the requirements documents and being in compliance. Security standards, e.g., those introduced by the ISO and OWASP, are compared against annotated software project documents for textual entailment relationships (NLP), and the results are used to train a neural network model (ML) for classifying security-based requirements. Hence, this approach aims to identify the appropriate structures that underlie software requirements documents. Once such structures are formalized and empirically validated, they will provide guidelines to software organizations for generating comprehensive and unambiguous requirements specification documents as related to security-oriented features. The proposed solution will assist organizations during the early phases of developing secure software and reduce overall development effort and costs.Item Applying Machine Learning to Optimize Sintered Powder Microstructures from Phase Field Modeling(2020-12) Batabyal, Arunabha; Zhang, Jing; Yang, Shengfeng; Du, XiaopingSintering is a primary particulate manufacturing technology to provide densification and strength for ceramics and many metals. A persistent problem in this manufacturing technology has been to maintain the quality of the manufactured parts. This can be attributed to the various sources of uncertainty present during the manufacturing process. In this work, a two-particle phase-field model has been analyzed which simulates microstructure evolution during the solid-state sintering process. The sources of uncertainty have been considered as the two input parameters surface diffusivity and inter-particle distance. The response quantity of interest (QOI) has been selected as the size of the neck region that develops between the two particles. Two different cases with equal and unequal sized particles were studied. It was observed that the neck size increased with increasing surface diffusivity and decreased with increasing inter-particle distance irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more influence on variation in neck size than that of surface diffusivity. The machine-learning algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. Bayesian Optimization method was used to find optimal values of the input parameters. For equal-sized particles, optimization using Probability of Improvement provided optimal values of surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, respectively. For unequal sized particles, optimal design values from Probability of Improvement were 23.9700 and 33.3005 for surface diffusivity and inter-particle distance, respectively, while those from Expected Improvement were 23.9893 and 33.9627. The optimization results from the two different acquisition functions seemed to be in good agreement with each other. The results also validated the fact that surface diffusivity should be higher and inter-particle distance should be lower for achieving larger neck size and better mechanical properties of the material.Item Automated Methods To Detect And Quantify Histological Features In Liver Biopsy Images To Aid In The Diagnosis Of Non-Alcoholic Fatty Liver Disease(2016-03-31) Morusu, Siripriya; Tuceryan, Mihran; Zheng, Jiang; Tsechpenakis, Gavriil; Fang, ShiaofenThe ultimate goal of this study is to build a decision support system to aid the pathologists in diagnosing Non-Alcoholic Fatty Liver Disease (NAFLD) in both adults and children. The disease is caused by accumulation of excess fat in liver cells. It is prevalent in approximately 30% of the general population in United States, Europe and Asian countries. The growing prevalence of the disease is directly related to the obesity epidemic in developed countries. We built computational methods to detect and quantify the histological features of a liver biopsy which aid in staging and phenotyping NAFLD. Image processing and supervised machine learning techniques are predominantly used to develop a robust and reliable system. The contributions of this study include development of a rich web interface for acquiring annotated data from expert pathologists, identifying and quantifying macrosteatosis in rodent liver biopsies as well as lobular inflammation and portal inflammation in human liver biopsies. Our work on detection of macrosteatosis in mouse liver shows 94.2% precision and 95% sensitivity. The model developed for lobular inflammation detection performs with precision and sensitivity of 79.3% and 81.3% respectively. We also present the first study on portal inflammation identification with 82.1% precision and 88.3% sensitivity. The thesis also presents results obtained for correlation between model computed scores for each of these lesions and expert pathologists' grades.Item Autosomal Dominantly Inherited Alzheimer Disease: Analysis of genetic subgroups by Machine Learning(Elsevier, 2020-06) Castillo-Barne, Diego; Su, Li; Ramírez, Javier; Salas-Gonzalez, Diego; Martinez-Murcia, Francisco J.; Illan, Ignacio A.; Segovia, Fermin; Ortiz, Andres; Cruchaga, Carlos; Farlow, Martin R.; Xiong, Chengjie; Graff-Radford, Neil R.; Schofield, Peter R.; Masters, Colin L.; Salloway, Stephen; Jucker, Mathias; Mori, Hiroshi; Levin, Johannes; Gorriz, Juan M.; Neurology, School of MedicineDespite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.Item Community Recommendation in Social Networks with Sparse Data(2020-12) Rahmaniazad, Emad; King, Brian; Jafari, Ali; Salama, PaulRecommender systems are widely used in many domains. In this work, the importance of a recommender system in an online learning platform is discussed. After explaining the concept of adding an intelligent agent to online education systems, some features of the Course Networking (CN) website are demonstrated. Finally, the relation between CN, the intelligent agent (Rumi), and the recommender system is presented. Along with the argument of three different approaches for building a community recommendation system. The result shows that the Neighboring Collaborative Filtering (NCF) outperforms both the transfer learning method and the Continuous bag-of-words approach. The NCF algorithm has a general format with two various implementations that can be used for other recommendations, such as course, skill, major, and book recommendations.Item Complex Vehicle Modeling: A Data Driven Approach(2019-12) Schoen, Alexander C.; Ben Miled, Zina; Dos Santos, Euzeli C.; King, Brian S.This thesis proposes an artificial neural network (NN) model to predict fuel consumption in heavy vehicles. The model uses predictors derived from vehicle speed, mass, and road grade. These variables are readily available from telematics devices that are becoming an integral part of connected vehicles. The model predictors are aggregated over a fixed distance traveled (i.e., window) instead of fixed time interval. It was found that 1km windows is most appropriate for the vocations studied in this thesis. Two vocations were studied, refuse and delivery trucks. The proposed NN model was compared to two traditional models. The first is a parametric model similar to one found in the literature. The second is a linear regression model that uses the same features developed for the NN model. The confidence level of the models using these three methods were calculated in order to evaluate the models variances. It was found that the NN models produce lower point-wise error. However, the stability of the models are not as high as regression models. In order to improve the variance of the NN models, an ensemble based on the average of 5-fold models was created. Finally, the confidence level of each model is analyzed in order to understand how much error is expected from each model. The mean training error was used to correct the ensemble predictions for five K-Fold models. The ensemble K-fold model predictions are more reliable than the single NN and has lower confidence interval than both the parametric and regression models.Item Deep Learning Based Methods for Automatic Extraction of Syntactic Patterns and their Application for Knowledge Discovery(2023-12-28) Kabir, Md. Ahsanul; Hasan, Mohammad Al; Mukhopadhyay, Snehasis; Tuceryan, Mihran; Fang, ShiaofenSemantic pairs, which consist of related entities or concepts, serve as the foundation for comprehending the meaning of language in both written and spoken forms. These pairs enable to grasp the nuances of relationships between words, phrases, or ideas, forming the basis for more advanced language tasks like entity recognition, sentiment analysis, machine translation, and question answering. They allow to infer causality, identify hierarchies, and connect ideas within a text, ultimately enhancing the depth and accuracy of automated language processing. Nevertheless, the task of extracting semantic pairs from sentences poses a significant challenge, necessitating the relevance of syntactic dependency patterns (SDPs). Thankfully, semantic relationships exhibit adherence to distinct SDPs when connecting pairs of entities. Recognizing this fact underscores the critical importance of extracting these SDPs, particularly for specific semantic relationships like hyponym-hypernym, meronym-holonym, and cause-effect associations. The automated extraction of such SDPs carries substantial advantages for various downstream applications, including entity extraction, ontology development, and question answering. Unfortunately, this pivotal facet of pattern extraction has remained relatively overlooked by researchers in the domains of natural language processing (NLP) and information retrieval. To address this gap, I introduce an attention-based supervised deep learning model, ASPER. ASPER is designed to extract SDPs that denote semantic relationships between entities within a given sentential context. I rigorously evaluate the performance of ASPER across three distinct semantic relations: hyponym-hypernym, cause-effect, and meronym-holonym, utilizing six datasets. My experimental findings demonstrate ASPER's ability to automatically identify an array of SDPs that mirror the presence of these semantic relationships within sentences, outperforming existing pattern extraction methods by a substantial margin. Second, I want to use the SDPs to extract semantic pairs from sentences. I choose to extract cause-effect entities from medical literature. This task is instrumental in compiling various causality relationships, such as those between diseases and symptoms, medications and side effects, and genes and diseases. Existing solutions excel in sentences where cause and effect phrases are straightforward, such as named entities, single-word nouns, or short noun phrases. However, in the complex landscape of medical literature, cause and effect expressions often extend over several words, stumping existing methods, resulting in incomplete extractions that provide low-quality, non-informative, and at times, conflicting information. To overcome this challenge, I introduce an innovative unsupervised method for extracting cause and effect phrases, PatternCausality tailored explicitly for medical literature. PatternCausality employs a set of cause-effect dependency patterns as templates to identify the key terms within cause and effect phrases. It then utilizes a novel phrase extraction technique to produce comprehensive and meaningful cause and effect expressions from sentences. Experiments conducted on a dataset constructed from PubMed articles reveal that PatternCausality significantly outperforms existing methods, achieving a remarkable order of magnitude improvement in the F-score metric over the best-performing alternatives. I also develop various PatternCausality variants that utilize diverse phrase extraction methods, all of which surpass existing approaches. PatternCausality and its variants exhibit notable performance improvements in extracting cause and effect entities in a domain-neutral benchmark dataset, wherein cause and effect entities are confined to single-word nouns or noun phrases of one to two words. Nevertheless, PatternCausality operates within an unsupervised framework and relies heavily on SDPs, motivating me to explore the development of a supervised approach. Although SDPs play a pivotal role in semantic relation extraction, pattern-based methodologies remain unsupervised, and the multitude of potential patterns within a language can be overwhelming. Furthermore, patterns do not consistently capture the broader context of a sentence, leading to the extraction of false-positive semantic pairs. As an illustration, consider the hyponym-hypernym pattern the w of u which can correctly extract semantic pairs for a sentence like the village of Aasu but fails to do so for the phrase the moment of impact. The root cause of this limitation lies in the pattern's inability to capture the nuanced meaning of words and phrases in a sentence and their contextual significance. These observations have spurred my exploration of a third model, DepBERT which constitutes a dependency-aware supervised transformer model. DepBERT's primary contribution lies in introducing the underlying dependency structure of sentences to a language model with the aim of enhancing token classification performance. To achieve this, I must first reframe the task of semantic pair extraction as a token classification problem. The DepBERT model can harness both the tree-like structure of dependency patterns and the masked language architecture of transformers, marking a significant milestone, as most large language models (LLMs) predominantly focus on semantics and word co-occurrence while neglecting the crucial role of dependency architecture. In summary, my overarching contributions in this thesis are threefold. First, I validate the significance of the dependency architecture within various components of sentences and publish SDPs that incorporate these dependency relationships. Subsequently, I employ these SDPs in a practical medical domain to extract vital cause-effect pairs from sentences. Finally, my third contribution distinguishes this thesis by integrating dependency relations into a deep learning model, enhancing the understanding of language and the extraction of valuable semantic associations.Item Enhanced Multiple Dense Layer EfficientNet(2024-08) Mohan, Aswathy; El-Sharkawy, Mohamed; King , Brian; Rizkalla, MaherIn the dynamic and ever-evolving landscape of Artificial Intelligence (AI), the domain of deep learning has emerged as a pivotal force, propelling advancements across a broad spectrum of applications, notably in the intricate field of image classification. Image classification, a critical task that involves categorizing images into predefined classes, serves as the backbone for numerous cutting-edge technologies, including but not limited to, automated surveillance, facial recognition systems, and advanced diagnostics in healthcare. Despite the significant strides made in the area, the quest for models that not only excel in accuracy but also demonstrate robust generalization across varied datasets, and maintain resilience against the pitfalls of overfitting, remains a formidable challenge. EfficientNetB0, a model celebrated for its optimized balance between computational efficiency and accuracy, stands at the forefront of solutions addressing these challenges. However, the nuanced complexities of datasets such as CIFAR-10, characterized by its diverse array of images spanning ten distinct categories, call for specialized adaptations to harness the full potential of such sophisticated architectures. In response, this thesis introduces an optimized version of the EffciientNetB0 architecture, meticulously enhanced with strategic architectural modifications, including the incorporation of an additional Dense layer endowed with 512 units and the strategic use of Dropout regularization. These adjustments are designed to amplify the model’s capacity for learning and interpreting complex patterns inherent in the data. Complimenting these architectural refinements, a nuanced two-phase training methodology is also adopted in the proposed model. This approach commences with the initial phase of training where the base model’s pre-trained weights are frozen, thus leveraging the power of transfer learning to secure a solid foundational understanding. The subsequent phase of fine-tuning, characterized by the selective unfreezing of layers, meticulously calibrates the model to the intricacies of the CIFAR-10 dataset. This is further bolstered by the implementation of adaptive learning rate adjustments, ensuring the model’s training process is both efficient and responsive to the nuances of the learning curve. Through a comprehensive suite of evaluations, encompassing accuracy assessments, confusion matrices, and detailed classification reports, the proposed model demonstrates notable improvement in performance. The insights gleaned from this research not only shed light on the mechanisms underpinning successful image classification models but also chart a course for future aimed at bridging the gap between theoretical model and their practical applications. This research encapsulates the iterative process of model enhancement, providing a beacon of future endeavors in the quest for optimal image classification solutions.