- Browse by Subject
Browsing by Subject "Kidney Tubules"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Aldosterone-induced proteins in primary cultures of rabbit renal cortical collecting system(1996-10) Bindels, Rend J.M.; Engbersen, A.M.T.; Hartog, A.; Blazer-Yost, BonniePrimary cultures of immunodissected cells from rabbit kidney connecting tubule and cortical collecting duct were used to study aldosterone's action on transcellular Na+ flux. Incubation with 10(-7) M aldosterone stimulated transcellular Na+ transport which was detected as an increase in benzamil-sensitive short-circuit current. The stimulatory response was consistently noted after 2 h of incubation and stabilized after 6 h. 2D-PAGE was used to identify proteins which were induced concurrently with the increase in transcellular Na+ flux after an aldosterone incubation of 15 h. Three aldosterone-induced proteins (AIPs; M(r) = 100, 70-77 and 46-50 kDa) were found in the membrane and microsomal fractions. Two of these appeared to have more than one isoform. A single heterogeneous AIP (M(r) = 77 kDa) was detected in the soluble fraction.Item Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy(Public Library of Science, 2015) Kelly, Katherine J.; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H.; Dominguez, Jesus H.; Department of Medicine, IU School of MedicineAutosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.Item In vivo renal synthesis and renal tubular secretion of para-tyramine in the rabbit(1986) Van Huysse, James W.Item Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones(American Physiological Society, 2015-04-15) Evan, Andrew P.; Coe, Fredric L.; Connors, Bret A.; Handa, Rajash K.; Lingeman, James E.; Worcester, Elaine M.; Department of Anatomy & Cell Biology, IU School of MedicineHuman stone calcium phosphate (CaP) content correlates with higher urine CaP supersaturation (SS) and urine pH as well as with the number of shock wave lithotripsy (SWL) treatments. SWL does damage medullary collecting ducts and vasa recta, sites for urine pH regulation. We tested the hypothesis that SWL raises urine pH and therefore Cap SS, resulting in CaP nucleation and tubular plugging. The left kidney (T) of nine farm pigs was treated with SWL, and metabolic studies were performed using bilateral ureteral catheters for up to 70 days post-SWL. Some animals were given an NH4Cl load to sort out effects on urine pH of CD injury vs. increased HCO3 (-) delivery. Histopathological studies were performed at the end of the functional studies. The mean pH of the T kidneys exceeded that of the control (C) kidneys by 0.18 units in 14 experiments on 9 pigs. Increased HCO3 (-) delivery to CD is at least partly responsible for the pH difference because NH4Cl acidosis abolished it. The T kidneys excreted more Na, K, HCO3 (-), water, Ca, Mg, and Cl than C kidneys. A single nephron site that could produce losses of all of these is the thick ascending limb. Extensive injury was noted in medullary thick ascending limbs and collecting ducts. Linear bands showing nephron loss and fibrosis were found in the cortex and extended into the medulla. Thus SWL produces tubule cell injury easily observed histopathologically that leads to functional disturbances across a wide range of electrolyte metabolism including higher than control urine pH.Item Role of angiotensin in the vascular response to chronic renal tubular obstruction(1982) Carmines, Pamela KayItem Role of insulin and IGF1 receptors in proliferation of cultured renal proximal tubule cells(1992-02-03) Blazer-Yost, Bonnie; Watanabe, Melanie; Haverty, Thomas P.; Ziyadeh, Fuad N.We have used a murine proximal tubule cell line (MCT cells) to determine the presence and binding characteristics of insulin and IGF1 receptors and to correlate these parameters with the concentration-response relationships for ligand-induced cellular proliferation. Separate insulin and IGF1 receptors were identified by equilibrium binding assays. Half-maximal displacement of either peptide occurred at 3-10 nM; crossover binding to the alternate receptor occurred with a 10- to 100-fold lower affinity. Peptide effects on cellular proliferation were determined by measuring [3H]thymidine incorporation. Both insulin and IGF1 stimulate thymidine incorporation in a dose-dependent manner with similar increases above the basal level. The estimated half-maximal stimulation (EC50) occurred at 4 nM for IGF1 and 8 nM for insulin. A comparison of the receptor binding affinities with the dose-response relationships for [3H]thymidine incorporation reveals that each growth factor appears to be exerting its effect via binding to its own receptor. Therefore, in this cell line, physiologic concentrations of either insulin or IGF1 can modulate cellular growth. To our knowledge this is the first demonstration of a mitogenic effect which may be modulated by ligand binding to the insulin receptor in proximal tubule epithelia.Item Tubular factors as the causes of reduced kidney function during ischemic renal failure in rats(1973) Sophasan, SamaisukhItem Urinary excretion of norepinephrine:role of tubular secretion and renal sympathetic nerves(1980) Lappe, Rodney W.