ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Islet"

Now showing 1 - 10 of 27
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Assessing the Pathophysiology of Hyperglycemia in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms (DREAM) Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium (T1DAPC)
    (Wolters Kluwer, 2022) Dungan, Kathleen M.; Hart, Phil A.; Andersen, Dana K.; Basina, Marina; Chinchilli, Vernon M.; Danielson, Kirstie K.; Evans-Molina, Carmella; Goodarzi, Mark O.; Greenbaum, Carla J.; Kalyani, Rita R.; Laughlin, Maren R.; Pichardo-Lowden, Ariana; Pratley, Richard E.; Serrano, Jose; Sims, Emily K.; Speake, Cate; Yadav, Dhiraj; Bellin, Melena D.; Toledo, Frederico G. S.; Type 1 Diabetes in Acute Pancreatitis Consortium; Medicine, School of Medicine
    Objectives: The metabolic abnormalities that lead to diabetes mellitus (DM) following an episode of acute pancreatitis (AP) have not been extensively studied. This manuscript describes the objectives, hypotheses, and methods of mechanistic studies of glucose metabolism that comprise secondary outcomes of the Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) Study. Methods: Three months after an index episode of AP, participants without pre-existing DM will undergo baseline testing with an oral glucose tolerance test. Participants will be followed longitudinally in three sub-cohorts with distinct metabolic tests. In the first and largest subcohort, oral glucose tolerance tests will be repeated 12 months after AP and annually to assess changes in β-cell function, insulin secretion, and insulin sensitivity. In the second, mixed meal tolerance tests will be performed at 3 and 12 months, then annually, and following incident DM to assess incretin and pancreatic polypeptide responses. In the third, frequently-sampled intravenous glucose tolerance tests will be performed at 3 months and 12 months to assess the first-phase insulin response and more precisely measure β-cell function and insulin sensitivity. Conclusions: The DREAM study will comprehensively assess the metabolic and endocrine changes that precede and lead to the development of DM after AP.
  • Loading...
    Thumbnail Image
    Item
    Circulating unmethylated CHTOP and INS DNA fragments provide evidence of possible islet cell death in youth with obesity and diabetes
    (BMC, 2020-07-31) Syed, Farooq; Tersey, Sarah A.; Turatsinze, Jean-Valery; Felton, Jamie L.; Kang, Nicole Jiyun; Nelson, Jennifer B.; Sims, Emily K.; Defrance, Mathieu; Bizet, Martin; Fuks, Francois; Cnop, Miriam; Bugliani, Marco; Marchetti, Piero; Ziegler, Anette-Gabriele; Bonifacio, Ezio; Webb-Robertson, Bobbie-Jo; Balamurugan, Appakalai N.; Evans-Molina, Carmella; Eizirik, Decio L.; Mather, Kieren J.; Arslanian, Silva; Mirmira, Raghavendra G.; Pediatrics, School of Medicine
    Background Identification of islet β cell death prior to the onset of type 1 diabetes (T1D) or type 2 diabetes (T2D) might allow for interventions to protect β cells and reduce diabetes risk. Circulating unmethylated DNA fragments arising from the human INS gene have been proposed as biomarkers of β cell death, but this gene alone may not be sufficiently specific to report β cell death. Results To identify new candidate genes whose CpG sites may show greater specificity for β cells, we performed unbiased DNA methylation analysis using the Infinium HumanMethylation 450 array on 64 human islet preparations and 27 non-islet human tissues. For verification of array results, bisulfite DNA sequencing of human β cells and 11 non-β cell tissues was performed on 5 of the top 10 CpG sites that were found to be differentially methylated. We identified the CHTOP gene as a candidate whose CpGs show a greater frequency of unmethylation in human islets. A digital PCR strategy was used to determine the methylation pattern of CHTOP and INS CpG sites in primary human tissues. Although both INS and CHTOP contained unmethylated CpG sites in non-islet tissues, they occurred in a non-overlapping pattern. Based on Naïve Bayes classifier analysis, the two genes together report 100% specificity for islet damage. Digital PCR was then performed on cell-free DNA from serum from human subjects. Compared to healthy controls (N = 10), differentially methylated CHTOP and INS levels were higher in youth with new onset T1D (N = 43) and, unexpectedly, in healthy autoantibody-negative youth who have first-degree relatives with T1D (N = 23). When tested in lean (N = 32) and obese (N = 118) youth, increased levels of unmethylated INS and CHTOP were observed in obese individuals. Conclusion Our data suggest that concurrent measurement of circulating unmethylated INS and CHTOP has the potential to detect islet death in youth at risk for both T1D and T2D. Our data also support the use of multiple parameters to increase the confidence of detecting islet damage in individuals at risk for developing diabetes.
  • Loading...
    Thumbnail Image
    Item
    The Contribution of Transcriptional Coregulators in the Maintenance of β-cell Function and Identity
    (Endocrine Society, 2021) Davidson, Rebecca K.; Kanojia, Sukrati; Spaeth, Jason M.; Biochemistry and Molecular Biology, School of Medicine
    Islet β-cell dysfunction that leads to impaired insulin secretion is a principal source of pathology of diabetes. In type 2 diabetes, this breakdown in β-cell health is associated with compromised islet-enriched transcription factor (TF) activity that disrupts gene expression programs essential for cell function and identity. TF activity is modulated by recruited coregulators that govern activation and/or repression of target gene expression, thereby providing a supporting layer of control. To date, more than 350 coregulators have been discovered that coordinate nucleosome rearrangements, modify histones, and physically bridge general transcriptional machinery to recruited TFs; however, relatively few have been attributed to β-cell function. Here, we will describe recent findings on those coregulators with direct roles in maintaining islet β-cell health and identity and discuss how disruption of coregulator activity is associated with diabetes pathogenesis.
  • Loading...
    Thumbnail Image
    Item
    Deoxyhypusine synthase promotes differentiation and proliferation of T helper type 1 (Th1) cells in autoimmune diabetes
    (ASBMB, 2013-12-20) Colvin, Stephanie C.; Maier, Bernhard; Morris, David L.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of Medicine
    In type 1 diabetes, cytokines arising from immune cells cause islet β cell dysfunction even before overt hyperglycemia. Deoxyhypusine synthase catalyzes the crucial hypusine modification of the factor eIF5A, which promotes the translation of a subset of mRNAs involved in cytokine responses. Here, we tested the hypothesis that deoxyhypusine synthase and, secondarily, hypusinated eIF5A contribute to the pathogenesis of type 1 diabetes using the non-obese diabetic (NOD) mouse model. Pre-diabetic NOD mice that received injections of the deoxyhypusine inhibitor N1-guanyl-1,7-diaminoheptane (GC7) demonstrated significantly improved glucose tolerance, more robust insulin secretion, and reduced insulitis compared with control animals. Analysis of tissues from treated mice revealed selective reductions in diabetogenic T helper type 1 (Th1) cells in the pancreatic lymph nodes, a primary site of antigen presentation. Isolated mouse CD90.2(+) splenocytes stimulated in vitro with anti-CD3/anti-CD28 and IL-2 to mimic autoimmune T cell activation exhibited proliferation and differentiation of CD4(+) T cell subsets (Th1, Th17, and Treg), but those treated with the deoxyhypusine synthase inhibitor GC7 showed a dose-dependent block in T cell proliferation with selective reduction in Th1 cells, similar to that observed in NOD mice. Inhibition of deoxyhypusine synthase blocked post-transcriptional expression of CD25, the high affinity IL-2 receptor α chain. Our results suggest a previously unrecognized role for deoxyhypusine synthase in promoting T cell proliferation and differentiation via regulation of CD25. Inhibition of deoxyhypusine synthase may provide a strategy for reducing diabetogenic Th1 cells and preserving β cell function in type 1 diabetes.
  • Loading...
    Thumbnail Image
    Item
    DOC2B enhancement of beta cell function and survival
    (2018-03-08) Aslamy, Arianne; Thurmond, Debbie C.; Elmendorf, Jeffrey S.; Evans-Molina, Carmella; Baucum, Anthony J.
    Diabetes mellitus is a complex metabolic disease that currently affects an estimated 422 million people worldwide, with incidence rates rising annually. Type 1 diabetes (T1D) accounts for 5-10% of these cases. Its complications remain a major cause of global deaths. T1D is characterized by autoimmune destruction of β-cell mass. Efforts to preserve and protect β-cell mass in the preclinical stages of T1D are limited by few blood-borne biomarkers of β-cell destruction. In healthy β-cells, insulin secretion requires soluble n-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes and associated accessory regulatory proteins to promote the docking and fusion of insulin vesicles at the plasma membrane. Two target membrane (t)-SNARE proteins, Syntaxin 1/4 and SNAP25/23, and one vesicle-associated (v)-SNARE protein, VAMP2, constitute the SNARE core complex. SNARE complex assembly is also facilitated by the regulatory protein, Double C2-domain protein β (DOC2B). I hypothesized that DOC2B deficiency may underlie β-cell susceptibility to T1D damage; conversely , overexpression of DOC2B may protect β-cell mass. Indeed, with regard to DOC2B abundance, my studies show reduced levels of DOC2B in platelets and islets of prediabetic rodents and new-onset T1D humans. Remarkably, clinical islet transplantation in T1D humans restores platelet DOC2B levels, indicating a correlation With regard to protection/functional effects, DOC2B deficiency enhances susceptibility to T1D in mice, while overexpression of DOC2B selectively in β-cells protects mice from chemically induced T1D; this correlates with preservation of functional β-cell mass. Mechanistically, overexpression of DOC2B and the DOC2B peptide, C2AB, protects clonal β-cell against cytokine or thapsigargin-induced apoptosis and reduces ER stress; this is dependent on C2AB’s calcium binding capacity. C2AB is sufficient to enhance glucose stimulated insulin secretion (GSIS) and SNARE activation in clonal β-cells to the same extent as full-length DOC2B. In summary, these studies identify DOC2B as a potential biomarker and novel therapeutic target for prevention/management of T1D.
  • Loading...
    Thumbnail Image
    Item
    Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity.
    (Springer, 2014-07) Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.; Biochemistry & Molecular Biology, School of Medicine
    AIMS/HYPOTHESIS: Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS: Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS: Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.
  • Loading...
    Thumbnail Image
    Item
    Editorial: Pancreas Imaging Across the Spectrum
    (Frontiers Media, 2021-01-03) Linnemann, Amelia K.; Poitout, Vincent; Rutter, Guy A.; Pediatrics, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice
    (Federation of American Societies for Experimental Biology, 2018-05-29) Tersey, Sarah A.; Levasseur, Esther M.; Syed, Farooq; Farb, Thomas B.; Orr, Kara S.; Nelson, Jennifer B.; Shaw, Janice L.; Bokvist, Krister; Mather, Kieren J.; Mirmira, Raghavendra G.; Pediatrics, School of Medicine
    Loss of functional islet β-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of β-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of β-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and β-cell mass, death, and dedifferentiation. Compared with LFD controls, β-cell mass increased during the feeding period in HFD animals, and statistically greater β-cell death (unmethylated Ins2) was detectable at 2 and 6 wk after diet initiation. Those times correspond to periods when significant step increases in fasting glucose and glucose intolerance, respectively, were detected. ALDH1A3 and Foxo1 immunostaining of the pancreas revealed evidence of β-cell dedifferentiation by 13 wk when fed an HFD, but not in LFD controls. In conclusion, early episodic β-cell death may be a feature of cellular turnover correlated with changes in glycemia during β-cell mass accrual in obesity, whereas β-cell dedifferentiation may be a feature seen later in established disease.-Tersey, S. A., Levasseur, E. M., Syed, F., Farb, T. B., Orr, K. S., Nelson, J. B., Shaw, J. L., Bokvist, K., Mather, K. J., Mirmira, R. G. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice.
  • Loading...
    Thumbnail Image
    Item
    Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling
    (Elsevier, 2022) Aguirre, Rebecca S.; Kulkarni, Abhishek; Becker, Matthew W.; Lei, Xiaoyong; Sarkar, Soumyadeep; Ramanadham, Sasanka; Phelps, Edward A.; Nakayasu, Ernesto S.; Sims, Emily K.; Mirmira, Raghavendra G.; Pediatrics, School of Medicine
    Background: Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. Scope of review: This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. Major conclusions: Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
  • Loading...
    Thumbnail Image
    Item
    Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death
    (MDPI, 2023-05-04) Chen, Yi-Chun; Lutkewitte, Andrew J.; Basavarajappa, Halesha D.; Fueger, Patrick T.; Pediatrics, School of Medicine
    A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D.
  • «
  • 1 (current)
  • 2
  • 3
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University