- Browse by Subject
Browsing by Subject "Intracranial hemorrhages"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury(American Medical Association, 2021) Yuh, Esther L.; Jain, Sonia; Sun, Xiaoying; Pisică, Dana; Harris, Mark H.; Taylor, Sabrina R.; Markowitz, Amy J.; Mukherjee, Pratik; Verheyden, Jan; Giacino, Joseph T.; Levin, Harvey S.; McCrea, Michael; Stein, Murray B.; Temkin, Nancy R.; Diaz-Arrastia, Ramon; Robertson, Claudia S.; Lingsma, Hester F.; Okonkwo, David O.; Maas, Andrew I. R.; Manley, Geoffrey T.; TRACK-TBI Investigators for the CENTER-TBI Investigators; Adeoye, Opeolu; Badjatia, Neeraj; Boase, Kim; Bodien, Yelena; Corrigan, John D.; Crawford, Karen; Dikmen, Sureyya; Duhaime, Ann-Christine; Ellenbogen, Richard; Feeser, V. Ramana; Ferguson, Adam R.; Foreman, Brandon; Gardner, Raquel; Gaudette, Etienne; Gonzalez, Luis; Gopinath, Shankar; Gullapalli, Rao; Hemphill, J. Claude; Hotz, Gillian; Keene, C. Dirk; Kramer, Joel; Kreitzer, Natalie; Lindsell, Chris; Machamer, Joan; Madden, Christopher; Martin, Alastair; McAllister, Thomas; Merchant, Randall; Nelson, Lindsay; Ngwenya, Laura B.; Noel, Florence; Nolan, Amber; Palacios, Eva; Perl, Daniel; Rabinowitz, Miri; Rosand, Jonathan; Sander, Angelle; Satris, Gabriella; Schnyer, David; Seabury, Seth; Toga, Arthur; Valadka, Alex; Vassar, Mary; Zafonte, Ross; Psychiatry, School of MedicineImportance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, setting, and participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main outcomes and measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.Item Recent Vitamin K Antagonist Use and Intracranial Hemorrhage After Endovascular Thrombectomy for Acute Ischemic Stroke(American Medical Association, 2023) Mac Grory, Brian; Holmes, DaJuanicia N.; Matsouaka, Roland A.; Shah, Shreyansh; Chang, Cherylee W. J.; Rison, Richard; Jindal, Jenelle; Holmstedt, Christine; Logan, William R.; Corral, Candy; Mackey, Jason S.; Gee, Joey R.; Bonovich, David; Walker, James; Gropen, Toby; Benesch, Curtis; Dissin, Jonathan; Pandey, Hemant; Wang, David; Unverdorben, Martin; Hernandez, Adrian F.; Reeves, Mathew; Smith, Eric E.; Schwamm, Lee H.; Bhatt, Deepak L.; Saver, Jeffrey L.; Fonarow, Gregg C.; Peterson, Eric D.; Xian, Ying; Neurology, School of MedicineImportance: Use of oral vitamin K antagonists (VKAs) may place patients undergoing endovascular thrombectomy (EVT) for acute ischemic stroke caused by large vessel occlusion at increased risk of complications. Objective: To determine the association between recent use of a VKA and outcomes among patients selected to undergo EVT in clinical practice. Design, setting, and participants: Retrospective, observational cohort study based on the American Heart Association's Get With the Guidelines-Stroke Program between October 2015 and March 2020. From 594 participating hospitals in the US, 32 715 patients with acute ischemic stroke selected to undergo EVT within 6 hours of time last known to be well were included. Exposure: VKA use within the 7 days prior to hospital arrival. Main outcome and measures: The primary end point was symptomatic intracranial hemorrhage (sICH). Secondary end points included life-threatening systemic hemorrhage, another serious complication, any complications of reperfusion therapy, in-hospital mortality, and in-hospital mortality or discharge to hospice. Results: Of 32 715 patients (median age, 72 years; 50.7% female), 3087 (9.4%) had used a VKA (median international normalized ratio [INR], 1.5 [IQR, 1.2-1.9]) and 29 628 had not used a VKA prior to hospital presentation. Overall, prior VKA use was not significantly associated with an increased risk of sICH (211/3087 patients [6.8%] taking a VKA compared with 1904/29 628 patients [6.4%] not taking a VKA; adjusted odds ratio [OR], 1.12 [95% CI, 0.94-1.35]; adjusted risk difference, 0.69% [95% CI, -0.39% to 1.77%]). Among 830 patients taking a VKA with an INR greater than 1.7, sICH risk was significantly higher than in those not taking a VKA (8.3% vs 6.4%; adjusted OR, 1.88 [95% CI, 1.33-2.65]; adjusted risk difference, 4.03% [95% CI, 1.53%-6.53%]), while those with an INR of 1.7 or lower (n = 1585) had no significant difference in the risk of sICH (6.7% vs 6.4%; adjusted OR, 1.24 [95% CI, 0.87-1.76]; adjusted risk difference, 1.13% [95% CI, -0.79% to 3.04%]). Of 5 prespecified secondary end points, none showed a significant difference across VKA-exposed vs VKA-unexposed groups. Conclusions and relevance: Among patients with acute ischemic stroke selected to receive EVT, VKA use within the preceding 7 days was not associated with a significantly increased risk of sICH overall. However, recent VKA use with a presenting INR greater than 1.7 was associated with a significantly increased risk of sICH compared with no use of anticoagulants.