- Browse by Subject
Browsing by Subject "Insulin secretion"
Now showing 1 - 10 of 26
Results Per Page
Sort Options
Item Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study(American Diabetes Association, 2021) Sam, Susan; Edelstein, Sharon L.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Hogan Tjaden, Ashley; Kahn, Steven E.; Mather, Kieren J.; Tripputi, Mark; Utzschneider, Kristina M.; Xiang, Anny H.; Nadeau, Kristen J.; The RISE Consortium; Pediatrics, School of MedicineObjective: To identify predictors of glycemic worsening among youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) Study. Research design and methods: A total of 91 youth (10-19 years) were randomized 1:1 to 12 months of metformin (MET) or 3 months of glargine, followed by 9 months of metformin (G-MET), and 267 adults were randomized to MET, G-MET, liraglutide plus MET (LIRA+MET), or placebo for 12 months. All participants underwent a baseline hyperglycemic clamp and a 3-h oral glucose tolerance test (OGTT) at baseline, month 6, month 12, and off treatment at month 15 and month 21. Cox models identified baseline predictors of glycemic worsening (HbA1c increase ≥0.5% from baseline). Results: Glycemic worsening occurred in 17.8% of youth versus 7.5% of adults at month 12 (P = 0.008) and in 36% of youth versus 20% of adults at month 21 (P = 0.002). In youth, glycemic worsening did not differ by treatment. In adults, month 12 glycemic worsening was less on LIRA+MET versus placebo (hazard ratio 0.21, 95% CI 0.05-0.96, P = 0.044). In both age-groups, lower baseline clamp-derived β-cell responses predicted month 12 and month 21 glycemic worsening (P < 0.01). Lower baseline OGTT-derived β-cell responses predicted month 21 worsening (P < 0.05). In youth, higher baseline HbA1c and 2-h glucose predicted month 12 and month 21 glycemic worsening, and higher fasting glucose predicted month 21 worsening (P < 0.05). In adults, lower clamp- and OGTT-derived insulin sensitivity predicted month 12 and month 21 worsening (P < 0.05). Conclusions: Glycemic worsening was more common among youth than adults with IGT or recently diagnosed type 2 diabetes, predicted by lower baseline β-cell responses in both groups, hyperglycemia in youth, and insulin resistance in adults.Item The Chd4 subunit of the NuRD complex regulates Pdx1-controlled genes involved in β-cell function(Bioscientifica, 2022-06-14) Davidson, Rebecca K.; Weaver, Staci A.; Casey, Nolan; Kanojia, Sukrati; Hogarth, Elise; Schneider Aguirre, Rebecca; Sims, Emily K.; Evans-Molina, Carmella; Spaeth, Jason M.; Biochemistry and Molecular Biology, School of MedicineType 2 diabetes (T2D) is associated with loss of transcription factors (TFs) from a subset of failing β-cells. Among these TFs is Pdx1, which controls the expression of numerous genes involved in maintaining β-cell function and identity. Pdx1 activity is modulated by transcriptional coregulators and has recently been shown, through an unbiased screen, to interact with the Chd4 ATPase subunit of the nucleosome remodeling and deacetylase complex. Chd4 contributes to the maintenance of cellular identity and functional status of numerous different cell types. Here, we demonstrated that Pdx1 dynamically interacts with Chd4 under physiological and stimulatory conditions within islet β-cells and established a fundamental role for Chd4 in regulating insulin secretion and modulating numerous Pdx1-bound genes in vitro, including the MafA TF, where we discovered Chd4 is bound to the MafA region 3 enhancer. Furthermore, we found that Pdx1:Chd4 interactions are significantly compromised in islet β-cells under metabolically induced stress in vivo and in human donor tissues with T2D. Our findings establish a fundamental role for Chd4 in regulating insulin secretion and modulating Pdx1-bound genes in vitro, and disruption of Pdx1:Chd4 interactions coincides with β-cell dysfunction associated with T2D.Item Checkpoint kinase 2 controls insulin secretion and glucose homeostasis(Springer Nature, 2024) Chong, Angie Chi Nok; Vandana, J. Jeya; Jeng, Ginnie; Li, Ge; Meng, Zihe; Duan, Xiaohua; Zhang, Tuo; Qiu, Yunping; Duran-Struuck, Raimon; Coker, Kimberly; Wang, Wei; Li, Yanjing; Min, Zaw; Zuo, Xi; de Silva, Neranjan; Chen, Zhengming; Naji, Ali; Hao, Mingming; Liu, Chengyang; Chen, Shuibing; Urology, School of MedicineAfter the discovery of insulin, a century ago, extensive work has been done to unravel the molecular network regulating insulin secretion. Here we performed a chemical screen and identified AZD7762, a compound that potentiates glucose-stimulated insulin secretion (GSIS) of a human β cell line, healthy and type 2 diabetic (T2D) human islets and primary cynomolgus macaque islets. In vivo studies in diabetic mouse models and cynomolgus macaques demonstrated that AZD7762 enhances GSIS and improves glucose tolerance. Furthermore, genetic manipulation confirmed that ablation of CHEK2 in human β cells results in increased insulin secretion. Consistently, high-fat-diet-fed Chk2-/- mice show elevated insulin secretion and improved glucose clearance. Finally, untargeted metabolic profiling demonstrated the key role of the CHEK2-PP2A-PLK1-G6PD-PPP pathway in insulin secretion. This study successfully identifies a previously unknown insulin secretion regulating pathway that is conserved across rodents, cynomolgus macaques and human β cells in both healthy and T2D conditions.Item Cigarette smoke exposure impairs β-cell function through activation of oxidative stress and ceramide accumulation(Elsevier, 2020-07) Tong, Xin; Chaudhry, Zunaira; Lee, Chih-Chun; Bone, Robert N.; Kanojia, Sukrati; Maddatu, Judith; Sohn, Paul; Weaver, Staci A.; Robertson, Morgan A.; Petrache, Irina; Evans-Molina, Carmella; Kono, Tatsuyoshi; Medicine, School of MedicineObjectives Epidemiological studies indicate that first- and second-hand cigarette smoke (CS) exposure are important risk factors for the development of type 2 diabetes (T2D). Additionally, elevated diabetes risk has been reported to occur within a short period of time after smoking cessation, and health risks associated with smoking are increased when combined with obesity. At present, the mechanisms underlying these associations remain incompletely understood. The objective of this study was to test the impact of CS exposure on pancreatic β-cell function using rodent and in vitro models. Methods Beginning at 8 weeks of age, C57BL/6 J mice were concurrently fed a high-fat diet (HFD) and exposed to CS for 11 weeks, followed by an additional 11 weeks of smoking cessation with continued HFD. Glucose tolerance testing was performed during CS exposure and during the cessation period. Cultured INS-1 β-cells and primary islets were exposed ex vivo to CS extract (CSE), and β-cell function and viability were tested. Since CS increases ceramide accumulation in the lung and these bioactive sphingolipids have been implicated in pancreatic β-cell dysfunction in diabetes, islet and β-cell sphingolipid levels were measured in islets from CS-exposed mice and in CSE-treated islets and INS-1 cells using liquid chromatography-tandem mass spectrometry. Results Compared to HFD-fed, ambient air-exposed mice, HFD-fed and CS-exposed mice had reduced weight gain and better glucose tolerance during the active smoking period. Following smoking cessation, CS-mice exhibited rapid weight gain and had accelerated worsening of their glucose tolerance. CS-exposed mice had higher serum proinsulin/insulin ratios, indicative of β-cell dysfunction, significantly lower β-cell mass (p = 0.017), reduced β-cell proliferation (p = 0.006), and increased islet ceramide content compared to non-smoking control mice. Ex vivo exposure of isolated islets to CSE was sufficient to increase islet ceramide levels, which was correlated with reduced insulin gene expression and glucose-stimulated insulin secretion, and increased β-cell oxidative and endoplasmic reticulum (ER) stress. Treatment with the antioxidant N-acetylcysteine markedly attenuated the effects of CSE on ceramide levels, restored β-cell function and survival, and increased cyclin D2 expression, while also reducing activation of β-cell ER and oxidative stress. Conclusions Our results indicate that CS exposure leads to impaired insulin production, processing, secretion and reduced β-cell viability and proliferation. These effects were linked to increased β-cell oxidative and ER stress and ceramide accumulation. Mice fed HFD continued to experience detrimental effects of CS exposure even during smoking cessation. Elucidation of the mechanisms by which CS exposure impairs β-cell function in synergy with obesity will help design therapeutic and preventive interventions for both active and former smokers.Item Comparisons of Metabolic Measures to Predict T1D vs Detect a Preventive Treatment Effect in High-Risk Individuals(Oxford University Press, 2024) Sims, Emily K.; Cuthbertson, David; Jacobsen, Laura; Ismail, Heba M.; Nathan, Brandon M.; Herold, Kevan C.; Redondo, Maria J.; Sosenko, Jay; Pediatrics, School of MedicineContext: Metabolic measures are frequently used to predict type 1 diabetes (T1D) and to understand effects of disease-modifying therapies. Objective: Compare metabolic endpoints for their ability to detect preventive treatment effects and predict T1D. Methods: Six-month changes in metabolic endpoints were assessed for (1) detecting treatment effects by comparing placebo and treatment arms from the randomized controlled teplizumab prevention trial, a multicenter clinical trial investigating 14-day intravenous teplizumab infusion and (2) predicting T1D in the TrialNet Pathway to Prevention natural history study. For each metabolic measure, t-Values from t tests for detecting a treatment effect were compared with chi-square values from proportional hazards regression for predicting T1D. Participants in the teplizumab prevention trial and participants in the Pathway to Prevention study selected with the same inclusion criteria used for the teplizumab trial were studied. Results: Six-month changes in glucose-based endpoints predicted diabetes better than C-peptide-based endpoints, yet the latter were better at detecting a teplizumab effect. Combined measures of glucose and C-peptide were more balanced than measures of glucose alone or C-peptide alone for predicting diabetes and detecting a teplizumab effect. Conclusion: The capacity of a metabolic endpoint to detect a treatment effect does not necessarily correspond to its accuracy for predicting T1D. However, combined glucose and C-peptide endpoints appear to be effective for both predicting diabetes and detecting a response to immunotherapy. These findings suggest that combined glucose and C-peptide endpoints should be incorporated into the design of future T1D prevention trials.Item Depressive symptoms and metabolic markers of risk for type 2 diabetes in obese adolescents(Wiley, 2013-11) Hannon, Tamara S.; Rofey, Dana L.; Lee, SoJung; Arslanian, Silva A.; Pediatrics, School of MedicineOBJECTIVE: Although higher rates of depression are found among individuals with type 2 diabetes, it remains unknown if the presence of depressive symptoms is associated with heightened metabolic risk for the development of type 2 diabetes among youth. The objective of this study was to evaluate whether depressive symptoms in obese adolescents are associated with impaired β-cell function relative to insulin sensitivity [oral disposition index (oDI)] and/or dysglycemia or prediabetes, predictors of type 2 diabetes development. RESEARCH DESIGN AND METHODS: Fasting and oral glucose tolerance test (OGTT)-derived indices of glucose tolerance, insulin sensitivity, secretion, and oDI were evaluated in obese youth (n = 56, age 15.0 ± 1.6 yr, 68% female). The Children's Depression Inventory was utilized to determine depressive symptomatology. RESULTS: Despite no association between depressive symptoms and measures of adiposity, youth with higher depressive symptoms had (i) significantly higher fasting and stimulated glucose levels (13% higher glucose area under the OGTT curve), (ii) ∼50% lower oDI, and (iii) a 50% frequency of prediabetes. CONCLUSIONS: These data point to an important relationship between depressive symptoms and a heightened metabolic risk for type 2 diabetes in obese adolescents, including prediabetes and impairment in β-cell function relative to insulin sensitivity. While the directionality of these relationships is unknown, it should be determined if treating one disorder improves the other or vice versa.Item Differential loss of β-cell function in youth vs. adults following treatment withdrawal in the Restoring Insulin Secretion (RISE) study(Elsevier, 2021) Utzschneider, Kristina M.; Tripputi, Mark T.; Kozedub, Alexandra; Barengolts, Elena; Caprio, Sonia; Cree-Green, Melanie; Edelstein, Sharon L.; El Ghormli, Laure; Hannon, Tamara S.; Mather, Kieren J.; Palmer, Jerry; Nadeau, Kristen J.; RISE Consortium; Medicine, School of MedicineAims: To compare OGTT-derived estimates of β-cell function between youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes after treatment discontinuation in RISE. Methods: Youth (n = 89) and adults (n = 132) were randomized to 3 months glargine followed by 9 months metformin (G/M) or 12 months metformin (MET). Insulin sensitivity and β-cell responses were estimated from 3-hour OGTTs over 21 months. Linear mixed models tested for differences by time and age group within each treatment arm. Results: After treatment withdrawal, HbA1c increased in both youth and adults with a larger net increase in G/M youth vs. adults at 21 months. Among youth, β-cell function decreased starting at 12 months in G/M and 15 months in MET. Among adults, β-cell function remained relatively stable although insulin secretion rates decreased in G/M at 21 months. At 21 months vs. baseline β-cell function declined to a greater extent in youth vs. adults in both the G/M and MET treatment arms. Conclusions: After treatment withdrawal youth demonstrated progressive decline in β-cell function after stopping treatment with either G/M or MET. In contrast, β-cell function in adults remained stable despite an increase in HbA1c over time.Item DOC2B enhancement of beta cell function and survival(2018-03-08) Aslamy, Arianne; Thurmond, Debbie C.; Elmendorf, Jeffrey S.; Evans-Molina, Carmella; Baucum, Anthony J.Diabetes mellitus is a complex metabolic disease that currently affects an estimated 422 million people worldwide, with incidence rates rising annually. Type 1 diabetes (T1D) accounts for 5-10% of these cases. Its complications remain a major cause of global deaths. T1D is characterized by autoimmune destruction of β-cell mass. Efforts to preserve and protect β-cell mass in the preclinical stages of T1D are limited by few blood-borne biomarkers of β-cell destruction. In healthy β-cells, insulin secretion requires soluble n-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes and associated accessory regulatory proteins to promote the docking and fusion of insulin vesicles at the plasma membrane. Two target membrane (t)-SNARE proteins, Syntaxin 1/4 and SNAP25/23, and one vesicle-associated (v)-SNARE protein, VAMP2, constitute the SNARE core complex. SNARE complex assembly is also facilitated by the regulatory protein, Double C2-domain protein β (DOC2B). I hypothesized that DOC2B deficiency may underlie β-cell susceptibility to T1D damage; conversely , overexpression of DOC2B may protect β-cell mass. Indeed, with regard to DOC2B abundance, my studies show reduced levels of DOC2B in platelets and islets of prediabetic rodents and new-onset T1D humans. Remarkably, clinical islet transplantation in T1D humans restores platelet DOC2B levels, indicating a correlation With regard to protection/functional effects, DOC2B deficiency enhances susceptibility to T1D in mice, while overexpression of DOC2B selectively in β-cells protects mice from chemically induced T1D; this correlates with preservation of functional β-cell mass. Mechanistically, overexpression of DOC2B and the DOC2B peptide, C2AB, protects clonal β-cell against cytokine or thapsigargin-induced apoptosis and reduces ER stress; this is dependent on C2AB’s calcium binding capacity. C2AB is sufficient to enhance glucose stimulated insulin secretion (GSIS) and SNARE activation in clonal β-cells to the same extent as full-length DOC2B. In summary, these studies identify DOC2B as a potential biomarker and novel therapeutic target for prevention/management of T1D.Item Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity.(Springer, 2014-07) Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.; Biochemistry & Molecular Biology, School of MedicineAIMS/HYPOTHESIS: Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS: Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS: Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.Item Dynamic regulation of pancreatic β cell function and gene expression by the SND1 coregulator in vitro(Taylor & Francis, 2023) Kanojia, Sukrati; Davidson, Rebecca K.; Conley, Jason M.; Xu, Jerry; Osmulski, Meredith; Sims, Emily K.; Ren, Hongxia; Spaeth, Jason M.; Biochemistry and Molecular Biology, School of MedicineThe pancreatic β cell synthesizes, packages, and secretes insulin in response to glucose-stimulation to maintain blood glucose homeostasis. Under diabetic conditions, a subset of β cells fail and lose expression of key transcription factors (TFs) required for insulin secretion. Among these TFs is Pancreatic and duodenal homeobox 1 (PDX1), which recruits a unique subset of transcriptional coregulators to modulate its activity. Here we describe a novel interacting partner of PDX1, the Staphylococcal Nuclease and Tudor domain-containing protein (SND1), which has been shown to facilitate protein-protein interactions and transcriptional control through diverse mechanisms in a variety of tissues. PDX1:SND1 interactions were confirmed in rodent β cell lines, mouse islets, and human islets. Utilizing CRISPR-Cas9 gene editing technology, we deleted Snd1 from the mouse β cell lines, which revealed numerous differentially expressed genes linked to insulin secretion and cell proliferation, including limited expression of Glp1r. We observed Snd1 deficient β cell lines had reduced cell expansion rates, GLP1R protein levels, and limited cAMP accumulation under stimulatory conditions, and further show that acute ablation of Snd1 impaired insulin secretion in rodent and human β cell lines. Lastly, we discovered that PDX1:SND1 interactions were profoundly reduced in human β cells from donors with type 2 diabetes (T2D). These observations suggest the PDX1:SND1 complex formation is critical for controlling a subset of genes important for β cell function and is targeted in diabetes pathogenesis.
- «
- 1 (current)
- 2
- 3
- »