ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Instrumentation"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Computer Program Instrumentation Using Reservoir Sampling & Pin++
    (2019-08) Upp, Brandon E.; Hill, James H.; Tuceryan, Mihran; Raje, Rajeev R.
    This thesis investigates techniques for improving real-time software instrumentation techniques of software systems. In particular, this thesis investigates two aspects of this real-time software instrumentation. First, this thesis investigates techniques for achieving different levels of visibility (i.e., ensuring all parts of a system are represented, or visible, in final results) into a software system without compromising software system performance. Secondly, this thesis investigates how using multi-core computing can be used to further reduce instrumentation overhead. The results of this research show that reservoir sampling can be used to reduce instrumentation overhead. Reservoir sampling at a rate of 20%, combined with parallelized disk I/O, added 34.1% additional overhead on a four-core machine, and only 9.9% additional overhead on a sixty-four core machine while also providing the desired system visibility. Additionally, this work can be used to further improve the performance of real-time distributed software instrumentation.
  • Loading...
    Thumbnail Image
    Item
    Realtime Dynamic Binary Instrumentation
    (2016) Du, Mike; Hill, James Haswell; Tuceryan, Mihran; Raje, Rajeev R.; Fang, Shiaofen
    This thesis presents a novel technique and framework for decreasing instrumenta- tion overhead in software systems that utilize dynamic binary instrumentation. First, we introduce a lightweight networking framework combined with an easily extensible BSON implementation as a heavy analysis routine replacement. Secondly, we bind instrumentation and analysis threads to non-overlapping cpu cores--allowing analysis threads to execute faster. Lastly, we utilize a lock-free buffering system to bridge the gap between instrumentation and analysis threads, and minimize the overhead to the instrumentation threads. Using this combination, we managed to write a dynamic binary instrumentation tool (DBI) in Pin using Pin++ that is almost 1100 % faster than its counterpart DBI tool with no buffering, and less than 500% slower than a similar tool with no analysis routine.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University