- Browse by Subject
Browsing by Subject "Homeodomain proteins"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects(Oxford University Press, 2021) Bellchambers, Helen M.; Ware, Stephanie M.; Pediatrics, School of MedicineLoss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.Item Mesenchyme Homeobox 2 Enhances Migration of Endothelial Colony Forming Cells Exposed to Intrauterine Diabetes Mellitus(Wiley, 2017-07) Gohn, Cassandra R.; Blue, Emily K.; Sheehan, BreAnn M.; Varberg, Kaela M.; Haneline, Laura S.; Cellular and Integrative Physiology, School of MedicineDiabetes mellitus (DM) during pregnancy has long-lasting implications for the fetus, including cardiovascular morbidity. Previously, we showed that endothelial colony forming cells (ECFCs) from DM human pregnancies have decreased vasculogenic potential. Here, we evaluate whether the molecular mechanism responsible for this phenotype involves the transcription factor, Mesenchyme Homeobox 2 (MEOX2). In human umbilical vein endothelial cells, MEOX2 upregulates cyclin-dependent kinase inhibitor expression, resulting in increased senescence and decreased proliferation. We hypothesized that dysregulated MEOX2 expression in neonatal ECFCs from DM pregnancies decreases network formation through increased senescence and altered cell cycle progression. Our studies show that nuclear MEOX2 is increased in ECFCs from DM pregnancies. To determine if MEOX2 is sufficient and/or required to induce impaired network formation, MEOX2 was overexpressed and depleted in ECFCs from control and DM pregnancies, respectively. Surprisingly, MEOX2 overexpression in control ECFCs resulted in increased network formation, altered cell cycle progression, and increased senescence. In contrast, MEOX2 knockdown in ECFCs from DM pregnancies led to decreased network formation, while cell cycle progression and senescence were unaffected. Importantly, migration studies demonstrated that MEOX2 overexpression increased migration, while MEOX2 knockdown decreased migration. Taken together, these data suggest that altered migration may be mediating the impaired vasculogenesis of ECFCs from DM pregnancies. While initially believed to be maladaptive, these data suggest that MEOX2 may serve a protective role, enabling increased vessel formation despite exposure to a DM intrauterine environment. J. Cell. Physiol. 232: 1885-1892, 2017.Item Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair(Springer Nature, 2022-02-08) Lan, Kuo-Chung; Wei, Kuo-Ting; Lin, Pei-Wen; Lin, Ching-Chen; Won, Pei-Ling; Liu, Ya-Fen; Chen, Yun-Ju; Cheng, Bi-Hua; Chu, Tien-Min G.; Chen, Jia-Feng; Huang, Ko-En; Chang, Chawnshang; Kang, Hong-Yo; Biomedical and Applied Sciences, School of DentistryLow testosterone level is an independent predictor of osteoporotic fracture in elderly men as well as increased fracture risk in men undergoing androgen deprivation. Androgens and androgen receptor (AR) actions are essential for bone development and homeostasis but their linkage to fracture repair remains unclear. Here we found that AR is highly expressed in the periosteum cells and is co-localized with a mesenchymal progenitor cell marker, paired-related homeobox protein 1 (Prrx1), during bone fracture repair. Mice lacking the AR gene in the periosteum expressing Prrx1-cre (AR-/Y;Prrx1::Cre) but not in the chondrocytes (AR-/Y;Col-2::Cre) exhibits reduced callus size and new bone volume. Gene expression data analysis revealed that the expression of several collagens, integrins and cell adhesion molecules were downregulated in periosteum-derived progenitor cells (PDCs) from AR-/Y;Prrx1::Cre mice. Mechanistically, androgens-AR signaling activates the AR/ARA55/FAK complex and induces the collagen-integrin α2β1 gene expression that is required for promoting the AR-mediated PDCs migration. Using mouse cortical-defect and femoral graft transplantation models, we proved that elimination of AR in periosteum of host mice impairs fracture healing, regardless of AR existence of transplanted donor graft. While testosterone implanted scaffolds failed to complete callus bridging across the fracture gap in AR-/Y;Prrx1::Cre mice, cell-based transplantation using DPCs re-expressing AR could lead to rescue bone repair. In conclusion, targeting androgen/AR axis in the periosteum may provide a novel therapy approach to improve fracture healing.Item Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses(American Association for the Advancement of Science, 2021) Son, Young Min; Cheon, In Su; Wu, Yue; Li, Chaofan; Wang, Zheng; Gao, Xiaochen; Chen, Yao; Takahashi, Yoshimasa; Fu, Yang-Xin; Dent, Alexander L.; Kaplan, Mark H.; Taylor, Justin J.; Cui, Weiguo; Sun, Jie; Microbiology and Immunology, School of MedicineMuch remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.