- Browse by Subject
Browsing by Subject "Hippocampal volume"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume(Springer, 2022) Milicic, Lidija; Vacher, Michael; Porter, Tenielle; Doré, Vincent; Burnham, Samantha C.; Bourgeat, Pierrick; Shishegar, Rosita; Doecke, James; Armstrong, Nicola J.; Tankard, Rick; Maruff, Paul; Masters, Colin L.; Rowe, Christopher C.; Villemagne, Victor L.; Laws, Simon M.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Australian Imaging Biomarkers and Lifestyle (AIBL) Study; Medical and Molecular Genetics, School of MedicineThe concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer's Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer's disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes.Item Neurogenesis in the adult brain, gene networks, and Alzheimer's Disease(2017-05-15) Horgusluoglu, Emrin; Saykin, Andrew J.; Foroud, Tatiana; Shen, Li; Liu, Yunlong; Nho, KwangsikNew neurons are generated throughout adulthood in two regions of the brain, the dentate gyrus of the hippocampus, which is important for memory formation and cognitive functions, and the sub-ventricular zone of the olfactory bulb, which is important for the sense of smell, and are incorporated into hippocampal network circuitry. Disruption of this process has been postulated to contribute to neurodegenerative disorders including Alzheimer’s disease [1]. AD is the most common form of adult-onset dementia and the number of patients with AD escalates dramatically each year. The generation of new neurons in the dentate gyrus declines with age and in AD. Many of the molecular players in AD are also modulators of adult neurogenesis, but the genetic mechanisms influencing adult neurogenesis in AD are unclear. The overall goal of this project is to identify candidate genes and pathways that play a role in neurogenesis in the adult brain and to test the hypotheses that 1) hippocampal neurogenesis-related genes and pathways are significantly perturbed in AD and 2) neurogenesis-related pathways are significantly associated with hippocampal volume and other AD-related biomarker endophenotypes including brain deposition of amyloid-β and tau pathology. First, potential modulators of adult neurogenesis and their roles in neurodegenerative diseases were evaluated. Candidate genes that control the turnover process of neural stem cells/precursors to new functional neurons during adult neurogenesis were manually curated using a pathway-based systems biology approach. Second, a targeted neurogenesis pathway-based gene analysis was performed resulting in the identification of ADORA2A as associated with hippocampal volume and memory performance in mild cognitive impairment and AD. Third, a genome-wide gene-set enrichment analysis was conducted to discover associations between hippocampal volume and AD related endophenotypes and neurogenesis-related pathways. Within the discovered neurogenesis enriched pathways, a gene-based association analysis identified TESC and ACVR1 as significantly associated with hippocampal volume and APOE and PVLR2 as significantly associated with tau and amyloid beta levels in cerebrospinal fluid. This project identifies new genetic contributions to hippocampal neurogenesis with translational implications for novel therapeutic targets related to learning and memory and neuroprotection in AD.Item Novel genetic loci associated with hippocampal volume(SpringerNature, 2017-01-18) Hibar, Derrek P.; Adams, Hieab H.H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, Mallar; Chen, Qiang; Ching, Christopher R.K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C.M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M.; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G.M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J.M.; De Geus, Eco J.C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H.H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Coon; Hoekstra, Pieter J.; Hoffman, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr., Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Purohit, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Valdés Hernández, Maria C.; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van't Ent, Dennis; Van Tol, Marie-Jose; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Arfan, M.; Department of Radiology and Imaging Sciences, IU School of MedicineThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.Item Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease(Elsevier, 2017-12) Horgusluoglu-Moloch, Emrin; Nho, Kwangsik; Risacher, Shannon L.; Kim, Sungeun; Foroud, Tatiana; Shaw, Leslie M.; Trojanowski, John Q.; Aisen, Paul S.; Peterson, Ronald C.; Jack, Clifford R., Jr.; Lovestone, Simon; Simmons, Andrew; Weiner, Michael W.; Saykin, Andrew J.; Medical and Molecular Genetics, School of MedicineAlzheimer's disease (AD) patients display hippocampal atrophy, memory impairment, and cognitive decline. New neurons are generated throughout adulthood in 2 regions of the brain implicated in AD, the dentate gyrus of the hippocampus and the subventricular zone of the olfactory bulb. Disruption of this process contributes to neurodegenerative diseases including AD, and many of the molecular players in AD are also modulators of adult neurogenesis. However, the genetic mechanisms underlying adult neurogenesis in AD have been underexplored. To address this gap, we performed a gene-based association analysis in cognitively normal and impaired participants using neurogenesis pathway-related candidate genes curated from existing databases, literature mining, and large-scale genome-wide association study findings. A gene-based association analysis identified adenosine A2a receptor (ADORA2A) as significantly associated with hippocampal volume and the association between rs9608282 within ADORA2A and hippocampal volume was replicated in the meta-analysis after multiple comparison adjustments (p = 7.88 × 10-6). The minor allele of rs9608282 in ADORA2A is associated with larger hippocampal volumes and better memory.