- Browse by Subject
Browsing by Subject "High-grade serous ovarian cancer (HGSOC)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Novel ZIP4-HDAC4-VEGFA Axis in High-Grade Serous Ovarian Cancer(MDPI, 2021-07-29) Fan, Qipeng; Li, Lihong; Wang, Tian-Li; Emerson, Robert E.; Xu, Yan; Obstetrics and Gynecology, School of MedicineWe have recently identified ZIP4 as a novel cancer stem cell (CSC) marker in high-grade serous ovarian cancer (HGSOC). While it converts drug-resistance to cisplatin (CDDP), we unexpectedly found that ZIP4 induced sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). Mechanistically, ZIP4 selectively upregulated HDAC IIa HDACs, with little or no effect on HDACs in other classes. HDAC4 knockdown (KD) and LMK-235 inhibited spheroid formation in vitro and tumorigenesis in vivo, with hypoxia inducible factor-1 alpha (HIF1α) and endothelial growth factor A (VEGFA) as functional downstream mediators of HDAC4. Moreover, we found that ZIP4, HDAC4, and HIF1α were involved in regulating secreted VEGFA in HGSOC cells. Furthermore, we tested our hypothesis that co-targeting CSC via the ZIP4-HDAC4 axis and non-CSC using CDDP is necessary and highly effective by comparing the effects of ZIP4-knockout/KD, HDAC4-KD, and HDACis, in the presence or absence of CDDP on tumorigenesis in mouse models. Our results showed that the co-targeting strategy was highly effective. Finally, data from human HGSOC tissues showed that ZIP4 and HDAC4 were upregulated in a subset of recurrent tumors, justifying the clinical relevance of the study. In summary, our study provides a new mechanistic-based targeting strategy for HGSOC.Item ZIP4 Is a Novel Cancer Stem Cell Marker in High-Grade Serous Ovarian Cancer(MDPI, 2020-12-09) Fan, Qipeng; Zhang, Wen; Emerson, Robert E.; Xu, Yan; Obstetrics and Gynecology, School of MedicineHigh-grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is functionally involved in cancer stem cell (CSC)-related cellular activities in HGSOC. Here, we identified ZIP4 as a novel CSC marker in HGSOC. Fluorescence-activated cell sorter (FACS)-sorted ZIP4+, but not ZIP4- cells, formed spheroids and displayed self-renewing and differentiation abilities. Over-expression of ZIP4 conferred drug resistance properties in vitro. ZIP4+, but not ZIP4- cells, formed tumors/ascites in vivo. We conducted limiting dilution experiments and showed that 100-200 ZIP4+ cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Genetic compensation studies showed that NOTCH3, but not NOTCH1, was a critical downstream mediator of ZIP4. Furthermore, NOTCH3, but not NOTCH1, physically bound to ZIP4. Collectively, our data suggest that ZIP4 is a novel CSC marker and the new ZIP4-NOTCH3 axis represents important therapeutic targets in HGSOC.