- Browse by Subject
Browsing by Subject "Genetic Algorithm"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item 3D Protein structure prediction with genetic tabu search algorithm(BMC, 2010-05-28) Zhang, Xiaolong; Wang, Ting; Luo, Huiping; Yang, Jack Y.; Deng, Youping; Tang, Jinshan; Yang, Mary Qu; Medicine, School of MedicineBackground Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively.Item Combining Semiempirical QM Methods with Atom Dipole Interaction Model for Accurate and Efficient Polarizability Calculations(2022-12) Young, Ryan; Pu, Jingzhi; Long, Eric C.; Naumann, Christoph; Sardar, RajeshMolecular polarizability plays a significant role in chemistry, biology, and medicine. Classical prediction of polarizability often relies on atomic-type specific polarizability optimized for training set molecules, which limits the calculations to systems of similar chemical environment. Although ab initio (AI) quantum mechanical (QM) methods are more transferable in predicting molecular polarizability, their high computational costs especially when used with large basis sets for obtaining quantitatively reliable results make them less practical. To obtain accurate QM polarizability in an efficient manner, we have developed a dual-level approach, where the polarizability (α) obtained from the efficient semiempirical QM (SE) method is corrected using a set of element-base atomic polarizabilities derived from the atomic dipole interaction model (ADIM) to reproduce the density functional theory (DFT) results. We have optimized the atomic polarizability correction parameters for CHON-containing systems using a small training set of molecules and tested the resulting SE-ADIM model on the neutral drug-like molecules in the QM7B database. SE-ADIM corrected AM1 showed substantial improvement with its relative percent error (RPE) compared to B3LYP reduced from 33.81% to 3.35%. To further test its robustness for larger molecules in broader chemical bonding situations, we applied this method to a collection of drug molecules from the e-Drug3D database. For the 1004 molecules tested, our SE-ADIM model, which only contains four empirical parameters, greatly reduces the RPE in AM1 polarizability relative to B3LYP from 26.8% to 2.9%. Error decomposition shows consistent improvements across molecules with diverse bond saturations, molecular sizes, and charge states. In addition, we have applied AlphaML, a promising machine learning (ML) technique for predicting molecular polarizability, to the e-Drug3D dataset to compare its performance with our SE-ADIM correction of AM1. We found SE-ADIM performs competitively with AlphaML bolstering our confidence in the value of our method. Errors distinct to AlphaML were also discovered. We found four molecules for which AlphaML predicts negative molecular polarizabilities, all of which were peroxides. In contrast, SE-ADIM has no such issue with these molecules or this chemical type. Finally, to improve performance of SE-ADIM when correcting AM1 molecular polarizability calculations for charged molecules, we introduce a charge dependent polarizability (CDP) enabled SE-ADIM. Training the CDP enabled SE-ADIM with a single additional parameter, B, we were able to reduce error in AM1 molecular polarizability calculations of charged molecules relative to B3LYP from 29.57% to 5.16%. By contrast, SE-ADIM without CDP corrected AM1 relative to B3LYP had an RPE of 8.56%. The most benefit of CDP was evident within negatively charged molecules where AM1 error relative to B3LYP fell from 32.20% to 3.77% while SE-ADIM without CDP enabled error for these same negative molecules was 10.06%.Item Dynamic electronic asset allocation comparing genetic algorithm with particle swarm optimization(2018-12) Islam, Md Saiful; Christopher, Lauren A.; King, Brian S.; El-Sharkawy, MohamedThe contribution of this research work can be divided into two main tasks: 1) implementing this Electronic Warfare Asset Allocation Problem (EWAAP) with the Genetic Algorithm (GA); 2) Comparing performance of Genetic Algorithm to Particle Swarm Optimization (PSO) algorithm. This research problem implemented Genetic Algorithm in C++ and used QT Data Visualization for displaying three-dimensional space, pheromone, and Terrain. The Genetic algorithm implementation maintained and preserved the coding style, data structure, and visualization from the PSO implementation. Although the Genetic Algorithm has higher fitness values and better global solutions for 3 or more receivers, it increases the running time. The Genetic Algorithm is around (15-30\%) more accurate for asset counts from 3 to 6 but requires (26-82\%) more computational time. When the allocation problem complexity increases by adding 3D space, pheromones and complex terrains, the accuracy of GA is 3.71\% better but the speed of GA is 121\% slower than PSO. In summary, the Genetic Algorithm gives a better global solution in some cases but the computational time is higher for the Genetic Algorithm with than Particle Swarm Optimization.Item A genetic algorithm approach to best scenarios selection for performance evaluation of vehicle active safety systems(2015) Gholamjafari, Ali; Li, LingxiGholamjafari, Ali MSECE, Purdue University, May 2015. A Genetic Algorithm Approach to Best Scenarios Selection for Performance Evaluation of Vehicle Active Safety Systems . Major Professor: Dr. Lingxi Li. One of the most crucial tasks for Intelligent Transportation Systems is to enhance driving safety. During the past several years, active safety systems have been broadly studied and they have been playing a significant role in vehicular safety. Pedestrian Pre- Collision System (PCS) is a type of active safety systems which is used toward pedestrian safety. Such system utilizes camera, radar or a combination of both to detect the relative position of the pedestrians towards the vehicle. Based on the speed and direction of the car, position of the pedestrian, and other useful information, the systems can anticipate the collision/near-collision events and take proper actions to reduce the damage due to the potential accidents. The actions could be triggering the braking system to stop the car automatically or could be simply sending a warning signal to the driver depending on the type of the events. We need to design proper testing scenarios, perform the vehicle testing, collect and analyze data to evaluate the performance of PCS systems. It is impossible though to test all possible accident scenarios due to the high cost of the experiments and the time limit. Therefore, a subset of complete testing scenarios (which is critical due to the different types of cost such as fatalities, social costs, the numbers of crashes, etc.) need to be considered instead. Note that selecting a subset of testing scenarios is equivalent to an optimization problem which is maximizing a cost function while satisfying a set of constraints. In this thesis, we develop an approach based on Genetic Algorithm to solve such optimization problems. We then utilize crash and field database to validate the accuracy of our algorithm. We show that our method is effective and robust, and runs much faster than exhaustive search algorithms. We also present some crucial testing scenarios as the result of our approach, which can be used in PCS field testing.Item Multiobjective Optimization of Composite Square Tube for Crashworthiness Requirements Using Artificial Neural Network and Genetic Algorithm(2021-12) Zende, Pradnya; Dalir, Hamid; Agarwal, Mangilal; Tovar, AndresDesign optimization of composite structures is of importance in the automotive, aerospace, and energy industry. The majority of optimization methods applied to laminated composites consider linear or simplified nonlinear models. Also, various techniques lack the ability to consider the composite failure criteria. Using artificial neural networks approximates the objective function to make it possible to use other techniques to solve the optimization problem. The present work describes an optimization process used to find the optimum design to meet crashworthiness requirements which includes minimizing peak crushing force and specific energy absorption for a square tube. The design variables include the number of plies, ply angle and ply thickness of the square tube. To obtain an effective approximation an artificial neural network (ANN) is used. Training data for the artificial neural network is obtained by crash analysis of a square tube for various samples using LS DYNA. The sampling plan is created using Latin Hypercube Sampling. The square tube is considered to be impacted by the rigid wall with fixed velocity and rigid body acceleration, force versus displacement curves are plotted to obtain values for crushing force, deceleration, crush length and specific energy absorbed. The optimized values for the square tube to fulfill the crashworthiness requirements are obtained using an artificial neural network combined with Multi-Objective Genetic Algorithms (MOGA). MOGA finds optimum values in the feasible design space. Optimal solutions obtained are presented by the Pareto frontier curve. The optimization is performed with accuracy considering 5% error.Item User Modeling and Optimization for Environmental Planning System Design(2014) Singh, Vidya Bhushan; Mukhopadhyay, Snehasis; Tuceryan, Mihran; Xia, YuniEnvironmental planning is very cumbersome work for environmentalists, government agencies like USDA and NRCS, and farmers. There are a number of conflicts and issues involved in such a decision making process. This research is based on the work to provide a common platform for environmental planning called WRESTORE (Watershed Restoration using Spatio-Temporal Optimization of Resources). We have designed a system that can be used to provide the best management practices for environmental planning. A distributed system was designed to combine high performance computing power of clusters/supercomputers in running various environmental model simulations. The system is designed to be a multi-user system just like a multi-user operating system. A number of stakeholders can log-on and run environmental model simulations simultaneously, seamlessly collaborate, and make collective judgments by visualizing their landscapes. In the research, we identified challenges in running such a system and proposed various solutions. One challenge was the lack of fast optimization algorithm. In our research, several algorithms are utilized such as Genetic Algorithm (GA) and Learning Automaton (LA). However, the criticism is that LA has a slow rate of convergence and that both LA and GA have the problem of getting stuck in local optima. We tried to solve the multi-objective problems using LA in batch mode to make the learning faster and accurate. The problems where the evaluation of the fitness functions for optimization is a bottleneck, like running environmental model simulation, evaluation of a number of such models in parallel can give considerable speed-up. In the multi-objective LA, different weight pair solutions were evaluated independently. We created their parallel versions to make them practically faster in computation. Additionally, we extended the parallelism concept with the batch mode learning. Another challenge we faced was in User Modeling. There are a number of User Modeling techniques available. Selection of the best user modeling technique is a hard problem. In this research, we modeled user's preferences and search criteria using an ANN (Artificial Neural Network). Training an ANN with limited data is not always feasible. There are many situations where a simple modeling technique works better if the learning data set is small. We formulated ways to fine tune the ANN in case of limited data and also introduced the concept of Deep Learning in User Modeling for environmental planning system.