- Browse by Subject
Browsing by Subject "Generative adversarial network"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Novel Method for 3D Lung Tumor Reconstruction Using Generative Models(MDPI, 2024-11-20) Najafi, Hamidreza; Savoji, Kimia; Mirzaeibonehkhater, Marzieh; Moravvej, Seyed Vahid; Alizadehsani, Roohallah; Pedrammehr, Siamak; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyBackground: Lung cancer remains a significant health concern, and the effectiveness of early detection significantly enhances patient survival rates. Identifying lung tumors with high precision is a challenge due to the complex nature of tumor structures and the surrounding lung tissues. Methods: To address these hurdles, this paper presents an innovative three-step approach that leverages Generative Adversarial Networks (GAN), Long Short-Term Memory (LSTM), and VGG16 algorithms for the accurate reconstruction of three-dimensional (3D) lung tumor images. The first challenge we address is the accurate segmentation of lung tissues from CT images, a task complicated by the overwhelming presence of non-lung pixels, which can lead to classifier imbalance. Our solution employs a GAN model trained with a reinforcement learning (RL)-based algorithm to mitigate this imbalance and enhance segmentation accuracy. The second challenge involves precisely detecting tumors within the segmented lung regions. We introduce a second GAN model with a novel loss function that significantly improves tumor detection accuracy. Following successful segmentation and tumor detection, the VGG16 algorithm is utilized for feature extraction, preparing the data for the final 3D reconstruction. These features are then processed through an LSTM network and converted into a format suitable for the reconstructive GAN. This GAN, equipped with dilated convolution layers in its discriminator, captures extensive contextual information, enabling the accurate reconstruction of the tumor's 3D structure. Results: The effectiveness of our method is demonstrated through rigorous evaluation against established techniques using the LIDC-IDRI dataset and standard performance metrics, showcasing its superior performance and potential for enhancing early lung cancer detection. Conclusions: This study highlights the benefits of combining GANs, LSTM, and VGG16 into a unified framework. This approach significantly improves the accuracy of detecting and reconstructing lung tumors, promising to enhance diagnostic methods and patient results in lung cancer treatment.Item mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave(IEEE, 2022) Xie, Yucheng; Jiang, Ruizhe; Guo, Xiaonan; Wang, Yan; Cheng, Jerry; Chen, Yingying; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyThere is a growing trend for people to perform work-outs at home due to the global pandemic of COVID-19 and the stay-at-home policy of many countries. Since a self-designed fitness plan often lacks professional guidance to achieve ideal outcomes, it is important to have an in-home fitness monitoring system that can track the exercise process of users. Traditional camera-based fitness monitoring may raise serious privacy concerns, while sensor-based methods require users to wear dedicated devices. Recently, researchers propose to utilize RF signals to enable non-intrusive fitness monitoring, but these approaches all require huge training efforts from users to achieve a satisfactory performance, especially when the system is used by multiple users (e.g., family members). In this work, we design and implement a fitness monitoring system using a single COTS mm Wave device. The proposed system integrates workout recognition, user identification, multi-user monitoring, and training effort reduction modules and makes them work together in a single system. In particular, we develop a domain adaptation framework to reduce the amount of training data collected from different domains via mitigating impacts caused by domain characteristics embedded in mm Wave signals. We also develop a GAN-assisted method to achieve better user identification and workout recognition when only limited training data from the same domain is available. We propose a unique spatialtemporal heatmap feature to achieve personalized workout recognition and develop a clustering-based method for concurrent workout monitoring. Extensive experiments with 14 typical workouts involving 11 participants demonstrate that our system can achieve 97% average workout recognition accuracy and 91% user identification accuracy.