ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Flow cytometry"

Now showing 1 - 10 of 15
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data
    (Institute of Electrical and Electronics Engineers, 2017-05) Rajwa, Bartek; Wallace, Paul K.; Griffiths, Elizabeth A.; Dundar, Murat; Computer and Information Science, School of Science
    OBJECTIVE: Flow cytometry (FC) is a widely acknowledged technology in diagnosis of acute myeloid leukemia (AML) and has been indispensable in determining progression of the disease. Although FC plays a key role as a posttherapy prognosticator and evaluator of therapeutic efficacy, the manual analysis of cytometry data is a barrier to optimization of reproducibility and objectivity. This study investigates the utility of our recently introduced nonparametric Bayesian framework in accurately predicting the direction of change in disease progression in AML patients using FC data. METHODS: The highly flexible nonparametric Bayesian model based on the infinite mixture of infinite Gaussian mixtures is used for jointly modeling data from multiple FC samples to automatically identify functionally distinct cell populations and their local realizations. Phenotype vectors are obtained by characterizing each sample by the proportions of recovered cell populations, which are, in turn, used to predict the direction of change in disease progression for each patient. RESULTS: We used 200 diseased and nondiseased immunophenotypic panels for training and tested the system with 36 additional AML cases collected at multiple time points. The proposed framework identified the change in direction of disease progression with accuracies of 90% (nine out of ten) for relapsing cases and 100% (26 out of 26) for the remaining cases. CONCLUSIONS: We believe that these promising results are an important first step toward the development of automated predictive systems for disease monitoring and continuous response evaluation. SIGNIFICANCE: Automated measurement and monitoring of therapeutic response is critical not only for objective evaluation of disease status prognosis but also for timely assessment of treatment strategies.
  • Loading...
    Thumbnail Image
    Item
    Characterization of cellular markers of herpesvirus infections in cultured cells
    (1986) Leland, Diane Schultze
  • Loading...
    Thumbnail Image
    Item
    Computational Analysis of Flow Cytometry Data
    (2013-07-12) Irvine, Allison W.; Dundar, Murat; Tuceryan, Mihran; Mukhopadhyay, Snehasis; Fang, Shiaofen
    The objective of this thesis is to compare automated methods for performing analysis of flow cytometry data. Flow cytometry is an important and efficient tool for analyzing the characteristics of cells. It is used in several fields, including immunology, pathology, marine biology, and molecular biology. Flow cytometry measures light scatter from cells and fluorescent emission from dyes which are attached to cells. There are two main tasks that must be performed. The first is the adjustment of measured fluorescence from the cells to correct for the overlap of the spectra of the fluorescent markers used to characterize a cell’s chemical characteristics. The second is to use the amount of markers present in each cell to identify its phenotype. Several methods are compared to perform these tasks. The Unconstrained Least Squares, Orthogonal Subspace Projection, Fully Constrained Least Squares and Fully Constrained One Norm methods are used to perform compensation and compared. The fully constrained least squares method of compensation gives the overall best results in terms of accuracy and running time. Spectral Clustering, Gaussian Mixture Modeling, Naive Bayes classification, Support Vector Machine and Expectation Maximization using a gaussian mixture model are used to classify cells based on the amounts of dyes present in each cell. The generative models created by the Naive Bayes and Gaussian mixture modeling methods performed classification of cells most accurately. These supervised methods may be the most useful when online classification is necessary, such as in cell sorting applications of flow cytometers. Unsupervised methods may be used to completely replace manual analysis when no training data is given. Expectation Maximization combined with a cluster merging post-processing step gives the best results of the unsupervised methods considered.
  • Loading...
    Thumbnail Image
    Item
    Decrease in Numbers of Naive and Resting B Cells in HIV-Infected Kenyan Adults Leads to a Proportional Increase in Total and Plasmodium falciparum-Specific Atypical Memory B Cells
    (American Association of Immunologists, 2017-06-15) Frosch, Anne E.; Odumade, Oludare A.; Taylor, Justin J.; Ireland, Kathleen; Ayodo, George; Ondigo, Bartholomew; Narum, David L.; Vulule, John; John, Chandy C.; Medicine, School of Medicine
    Human immunodeficiency virus type 1 (HIV-1) infection is associated with B cell activation and exhaustion, and hypergammaglobulinemia. How these changes influence B cell responses to coinfections such as malaria is poorly understood. To address this, we compared B cell phenotypes and Abs specific for the Plasmodium falciparum vaccine candidate apical membrane Ag-1 (AMA1) in HIV-infected and uninfected adults living in Kenya. Surprisingly, HIV-1 infection was not associated with a difference in serum AMA1-specific Ab levels. HIV-infected individuals had a higher proportion of total atypical and total activated memory B cells (MBCs). Using an AMA1 tetramer to detect AMA1-specific B cells, HIV-infected individuals were also shown to have a higher proportion of AMA1-specific atypical MBCs. However, this proportional increase resulted in large part from a loss in the number of naive and resting MBCs rather than an increase in the number of atypical and activated cells. The loss of resting MBCs and naive B cells was mirrored in a population of cells specific for an Ag to which these individuals were unlikely to have been chronically exposed. Together, the data show that changes in P. falciparum Ag-specific B cell subsets in HIV-infected individuals mirror those in the overall B cell population, and suggest that the increased proportion of atypical MBC phenotypes found in HIV-1-infected individuals results from the loss of naive and resting MBCs.
  • Loading...
    Thumbnail Image
    Item
    Flow cytometry analyses of adipose tissue macrophages
    (Elsevier, 2014-11-25) Cho, Kae Won; Morris, David L.; Lumeng, Carey N.; Department of Medicine, IU School of Medicine
    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory.
  • Loading...
    Thumbnail Image
    Item
    Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment
    (Nature Publishing Group, 2017-04) Guo, Bin; Huang, Xinxin; Cooper, Scott; Broxmeyer, Hal E.; Microbiology and Immunology, School of Medicine
    Efficient hematopoietic stem cell (HSC) homing is important for hematopoietic cell transplantation (HCT), especially when HSC numbers are limited, as in the use of cord blood (CB). In a screen of small-molecule compounds, we identified glucocorticoid (GC) hormone signaling as an activator of CXCR4 expression in human CB HSCs and hematopoietic progenitor cells (HPCs). Short-term GC pretreatment of human CB HSCs and HPCs promoted SDF-1-CXCR4-axis-mediated chemotaxis, homing, and long-term engraftment when these cells were transplanted into primary- and secondary-recipient NSG mice. Mechanistically, activated glucocorticoid receptor binds directly to a glucocorticoid response element in the CXCR4 promoter and recruits the SRC-1-p300 complex to promote H4K5 and H4K16 histone acetylation, facilitating transcription of CXCR4. These results suggest a new and readily available means to enhance the clinical efficacy of CB HCT.
  • Loading...
    Thumbnail Image
    Item
    Hematopoietic Stem Cell Identification Postirradiation
    (Springer, 2023) Patterson, Andrea M.; Orschell, Christie M.; Pelus, Louis M.; Medicine, School of Medicine
    Radiation exposure is particularly damaging to cells of the hematopoietic system, inducing pancytopenia and bone marrow failure. The study of these processes, as well as the development of treatments to prevent hematopoietic damage or enhance recovery after radiation exposure, often require analysis of bone marrow cells early after irradiation. While flow cytometry methods are well characterized for identification and analysis of bone marrow populations in the nonirradiated setting, multiple complications arise when dealing with irradiated tissues. Among these complications is a radiation-induced loss of c-Kit, a central marker for conventional gating of primitive hematopoietic populations in mice. These include hematopoietic stem cells (HSCs), which are central to blood reconstitution and life-long bone marrow function, and are important targets of analysis in these studies. This chapter outlines techniques for HSC identification and analysis from mouse bone marrow postirradiation.
  • Loading...
    Thumbnail Image
    Item
    Impact of ALCAM (CD166) on homing of hematopoietic stem and progenitor cells
    (2012-12-18) Aleksandrova, Mariya Aleksandrova; Goebl, Mark G.; Srour, Edward F.; Hurley, Thomas D., 1961-
    The potential of hematopoietic stem cells (HSC) to home and to anchor within the bone marrow (BM) microenvironment controls the ability of transplanted HSCs to establish normal hematopoiesis. Activated Leukocyte Cell Adhesion Molecule (ALCAM; also identified as CD166), which participates in homophilic interactions, is expressed on a group of osteoblasts in the hematopoietic niche capable of sustaining functional HSC in vitro. Since we could also detect ALCAM expression on HSC, we suspect that ALCAM may play a role in anchoring primitive hematopoietic cells to ALCAM expressing components of the hematopoietic niche via dimerization. We investigated the role of ALCAM on the homing abilities of hematopoietic stem and progenitor cells (HSPC) by calculating recovery frequency of Sca-1+ALCAM+ cells in an in vivo murine bone marrow transplantation model. Our data supports the notion that ALCAM promotes improved homing potential of hematopoietic Sca-1+ cells. Recovery of BM-homed Sca-1+ cells from the endosteal region was 1.8-fold higher than that of total donor cells. However, a 3.0-fold higher number of Sca-1+ALCAM+ cells homed to the endosteal region compared to total donor cells. Similarly, homed Sca-1+ALCAM+ cells were recovered from the vascular region at 2.1-fold greater frequency than total homed donor cells from that region, compared to only a 1.3-fold increase in the recovery frequency of Sca-1+ cells. In vitro quantitation of clonogenic BM-homed hematopoietic progenitors corroborate the results from the homing assay. The frequency of in vitro clonogenic progenitors was significantly higher among endosteal-homed Sca-1+ALCAM+ cells compared to other fractions of donor cells. Collectively, these data demonstrate that engrafting HSC expressing ALCAM home more efficiently to the BM and within the BM microenvironment, these cells preferentially seed the endosteal niche.
  • Loading...
    Thumbnail Image
    Item
    Increased Interleukin-17 in Peripheral Blood and Cerebrospinal Fluid of Neurosyphilis Patients
    (Public Library of Science, 2014-07-31) Wang, Cuini; Zhu, Lin; Gao, Zixiao; Guan, Zhifang; Lu, Haikong; Shi, Mei; Gao, Ying; Xu, Huanbin; Yang, X. Frank; Zhou, Pingyu; Microbiology and Immunology, School of Medicine
    Background: Treponema pallidum infection evokes vigorous immune responses, resulting in tissue damage. Several studies have demonstrated that IL-17 may be involved in the pathogenesis of syphilis. However, the role of Th17 response in neurosyphilis remains unclear. Methodology/principal findings: In this study, Th17 in peripheral blood from 103 neurosyphilis patients, 69 syphilis patients without neurological involvement, and 70 healthy donors were analyzed by flow cytometry. The level of IL-17 in cerebrospinal fluid (CSF) was quantified by ELISA. One-year follow up for 44 neurosyphilis patients was further monitored to investigate the role of Th17/IL-17 in neurosyphilis. We found that the frequency of Th17 cells was significantly increased in peripheral blood of patients with neurosyphilis, in comparison to healthy donors. IL-17 in CSF were detected from 55.3% neurosyphilis patients (in average of 2.29 (0-59.83) pg/ml), especially in those with symptomatic neurosyphilis (61.9%). CSF IL-17 was predominantly derived from Th17 cells in neurosyphilis patients. Levels of IL-17 in CSF of neurosyphilis patients were positively associated with total CSF protein levels and CSF VDRL (Venereal Disease Research Laboratory) titers. Notably, neurosyphilis patients with undetectable CSF IL-17 were more likely to confer to CSF VDRL negative after treatment. Conclusions: These findings indicate that Th17 response may be involved in central nervous system damage and associated with clinical symptoms in neurosyphilis patients. Th17/IL-17 may be used as an alternative surrogate marker for assessing the efficacy of clinical treatment of neurosyphilis patients.
  • Loading...
    Thumbnail Image
    Item
    LAMP-2C inhibits MHC class II presentation of cytoplasmic antigens by disrupting chaperone-mediated autophagy
    (American Association of Immunologists, 2016-03-15) Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J.; Deffit, Sarah N.; Zhou, Delu; Blum, Janice S.; Department of Microbiology & Immunology, IU School of Medicine
    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University