- Browse by Subject
Browsing by Subject "Ferrochelatase"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The molecular mechanism of action of the antiangiogenic natural product, cremastranone(2016-07) Basavarajappa, Halesha Dhurvigere; Corson, Timothy W.; Grant, Maria B.; Hurley, Thomas D.; Quilliam, Lawrence A.; Chan, RebeccaPrevention of pathological angiogenesis is a key strategy for treatment of common blinding ocular diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The current treatment strategies are associated with partial vision loss and are ineffective in a significant patient population. Hence novel drugs as well as new ways to target ocular angiogenesis are needed for treating these diseases. I pursued a natural antiangiogenic compound, cremastranone, to develop novel drug leads and to find new targets. The objective of my doctoral thesis project was to elucidate cremastranone’s molecular mechanism of action and optimize its structureactivity relationship (SAR). In order to achieve this goal, with the help of chemistry collaborators cremastranone was synthesized for the first time. I showed that cremastranone has 50-fold more potency against endothelial cells as compared to nonendothelial cells, and also tested a novel active isomer, SH-11052. By SAR studies I identified a potent molecule, SH-11037, that has 10-fold more selectivity against retinal endothelial cells as compared to macrovascular endothelial cells. I then elucidated cremastranone’s molecular mechanism using a chemical proteomic approach. I identified ferrochelatase (FECH) as a specific interacting protein partner of cremastranone using photoaffinity chromatography. Hence, I hypothesized that cremastranone exerts its antiangiogenic activities through modulation of the functions of FECH. Cremastranone inhibited the enzymatic activity FECH in endothelial cells. Therefore, I investigated the role of FECH in ocular angiogenesis. Partial loss of FECH, using a siRNA-based knock down approach, decreased retinal angiogenesis both in vitro and in vivo in mouse models. Knock down of FECH decreased the expression levels of key proangiogenic proteins HIF-1α, eNOS, and VEGFR2. This work suggests that ferrochelatase plays an important, previously undocumented role in angiogenesis and that targeting of this enzyme by cremastranone might be exploited to inhibit pathological angiogenesis in ocular diseases.Item Retinal Phenotyping of Ferrochelatase Mutant Mice Reveals Protoporphyrin Accumulation and Reduced Neovascular Response(ARVO, 2021-02-01) Sardar Pasha, S. P. B.; Shetty, Trupti; Lambert-Cheatham, Nathan A.; Sishtla, Kamakshi; Mathew, Deepa; Muniyandi, Anbukkarasi; Patwari, Neeta; Bhatwadekar, Ashay D.; Corson, Timothy W.; Ophthalmology, School of MedicinePurpose: Heme depletion, through inhibition of ferrochelatase (FECH), blocks retinal and choroidal neovascularization. Both pharmacologic FECH inhibition and a partial loss-of-function Fech mutation (Fechm1Pas) are associated with decreased neovascularization. However, the ocular physiology of Fechm1Pas mice under basal conditions has not been characterized. Here, we aimed to characterize the retinal phenotype of Fechm1Pas mice. Methods: We monitored retinal vasculature at postnatal day 17, 2 months, and 6 months in Fechm1Pas homozygotes, heterozygotes, and their wild-type littermates. We characterized Fech substrate protoporphyrin (PPIX) fluorescence in the eye (excitation = 403 nm, emission = 628 nm), retinal function by electroretinogram, visual acuity by optomotor reflex, and retinal morphology by optical coherence tomography and histology. We stained vasculature using isolectin B4 and fluorescein angiography. We determined endothelial sprouting of retinal and choroidal tissue ex vivo and bioenergetics of retinal punches using a Seahorse flux analyzer. Results: Fundi, retinal vasculature, venous width, and arterial tortuosity showed no aberrations. However, VEGF-induced retinal and choroidal sprouting was decreased in Fechm1Pas mutants. Homozygous Fechm1Pas mice had pronounced buildup of PPIX in the posterior eye with no damage to visual function, bioenergetics, and integrity of retinal layers. Conclusions: Even with a buildup of PPIX in the retinal vessels in Fechm1Pas homozygotes, the vasculature remains normal. Notably, stimulus-induced ex vivo angiogenesis was decreased in Fechm1Pas mutants, consistent with reduced pathologic angiogenesis seen previously in neovascular animal models. Our findings indicate that Fechm1Pas mice are a useful model for studying the effects of heme deficiency on neovascularization due to Fech blockade.