ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Extracellular fluid"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cerebrospinal fluid levels of extracellular heat shock protein 72: A potential biomarker for bacterial meningitis in children
    (Thieme, 2014-03) Standage, Stephen W.; Lahni, Patrick M.; Ma, William; Kernie, Steven G.; Wong, Hector R.; Wheeler, Derek S.; Pediatrics, School of Medicine
    Extracellular heat shock protein 72 (Hsp72) is an endogenous danger signal and potential biomarker for critical illness in children. We hypothesized that elevated levels of extracellular Hsp72 in the cerebrospinal fluid (CSF) of children with suspected meningitis could predict bacterial meningitis. We measured extracellular Hsp72 levels in the CSF of 31 critically ill children with suspected meningitis via a commercially available enzyme-linked immunosorbent assay. Fourteen had bacterial meningitis based on CSF pleocytosis and bacterial growth in either blood or CSF culture. Seventeen children with negative cultures comprised the control group. CSF Hsp72 was significantly elevated in children with bacterial meningitis compared to controls. Importantly, CSF Hsp72 levels did not correlate with the CSF white blood cell count. On receiver operator characteristic analysis, using a cut-off of 8.1 ng/mL, CSF Hsp72 has a sensitivity of 79% and a specificity of 94% for predicting bacterial meningitis. We therefore conclude that CSF extracellular Hsp72 levels are elevated in critically ill children with bacterial meningitis versus controls. Hsp72 potentially offers clinicians improved diagnostic information in distinguishing bacterial meningitis from other processes.
  • Loading...
    Thumbnail Image
    Item
    Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia
    (Massachusetts Medical Society, 2013) Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter, III; Thakker, Rajesh V.; Medicine, School of Medicine
    Background: Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide-binding protein (G-protein)-coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. Methods: We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. Results: The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2-associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2-associated mutations increased cell sensitivity. Conclusions: Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2.
  • Loading...
    Thumbnail Image
    Item
    Regulation of injury-induced skeletal myofiber regeneration by glucose transporter 4 (GLUT4)
    (Springer Nature, 2024-12-19) Sermersheim, Tyler J.; Phillips, LeAnna J.; Evans, Parker L.; Kahn, Barbara B.; Welc, Steven S.; Witczak, Carol A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Background: Insulin resistance and type 2 diabetes impair cellular regeneration in multiple tissues including skeletal muscle. The molecular basis for this impairment is largely unknown. Glucose uptake via glucose transporter GLUT4 is impaired in insulin resistance. In healthy muscle, acute injury stimulates glucose uptake. Whether decreased glucose uptake via GLUT4 impairs muscle regeneration is presently unknown. The goal of this study was to determine whether GLUT4 regulates muscle glucose uptake and/or regeneration following acute injury. Methods: Tibialis anterior and extensor digitorum longus muscles from wild-type, control, or muscle-specific GLUT4 knockout (mG4KO) mice were injected with the myotoxin barium chloride to induce muscle injury. After 3, 5, 7, 10, 14, or 21 days (in wild-type mice), or after 7 or 14 days (in control & mG4KO) mice, muscles were isolated to examine [3H]-2-deoxyglucose uptake, GLUT4 levels, extracellular fluid space, fibrosis, myofiber cross-sectional area, and myofiber centralized nuclei. Results: In wild-type mice, muscle glucose uptake was increased 3, 5, 7, and 10 days post-injury. There was a rapid decrease in GLUT4 protein levels that were restored to baseline at 5-7 days post-injury, followed by a super-compensation at 10-21 days. In mG4KO mice, there were no differences in muscle glucose uptake, extracellular fluid space, muscle fibrosis, myofiber cross-sectional areas, or percentage of centrally nucleated myofibers at 7 days post-injury. In contrast, at 14 days injured muscles from mG4KO mice exhibited decreased glucose uptake, muscle weight, myofiber cross sectional areas, and centrally nucleated myofibers, with no change in extracellular fluid space or fibrosis. Conclusions: Collectively, these findings demonstrate that glucose uptake via GLUT4 regulates skeletal myofiber regeneration following acute injury.
  • Loading...
    Thumbnail Image
    Item
    The regulation of the spontaneous contractions of the initial lymphatics of the bat's wing
    (1985) Unthank, Joseph L.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University