- Browse by Subject
Browsing by Subject "EpCAM"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detecting and phenotyping of aneuploid circulating tumor cells in patients with various malignancies(Taylor & Francis, 2019) Ye, Zhenlong; Ding, Yongmei; Chen, Zhuo; Li, Zhong; Ma, Shuo; Xu, Zenghui; Cheng, Liang; Wang, Xinyue; Zhang, Xiaoxia; Ding, Na; Zhang, Qian; Qian, Qijun; Pathology and Laboratory Medicine, School of MedicineCirculating tumor cells (CTCs) have been exclusively studied and served to assess the clinical outcomes of treatments and progression of cancer. Most CTC data have mainly been derived from distinct cohorts or selected tumor types. In the present study, a total of 594 blood samples from 479 cases with 19 different carcinomas and 30 healthy samples were collected and analyzed by Subtraction enrichment method combined with immunostaining-fluorescence in situ hybridization (iFISH). Non-hematopoietic cells with aneuploid chromosome 8 (more than 2 copies) were regarded as positive CTCs. The results showed that none of CTCs was found in all 30 healthy samples. The overall positive rate of CTCs was 89.0% in diagnosed cancer patients (ranging from 75.0% to 100.0%). Average number of 11, 5, 8 and 4 CTCs per 7.5 mL was observed in lung cancer, liver cancer, renal cancer and colorectal cancer, respectively. Among 19 different carcinomas, the total number of CTCs, tetraploid chromosome 8, polyploid chromosome 8, CTM (Circulating tumor microemboli) and large CTCs in patients with stage Ⅲ and Ⅳ were statistically higher than patients with stage Ⅰ and Ⅱ (P < 0.05). Furthermore, EpCAM expression was more frequently found in most CTCs than vimentin expression, confirming that these CTCs were of epithelial origin. In addition, small and large CTCs were also classified, and the expression of vimentin was mostly observed in small CTCs and CTM. Our results revealed that there are higher numbers of CTCs, tetraploid, polyploid and large CTCs in patients with stage Ⅲ and Ⅳ, indicating that the quantification of chromosome ploidy performed by SE-iFISH for CTCs might be a useful tool to predict and evaluate therapeutic efficacy as well as to monitoring disease progression.Item Lymph node and peri-lymph node stroma : phenotype and interaction with T-cells(2014-07-11) Stoffel, Nicholas J.; Touloukian, Christopher E.; Broxmeyer, Hal E.; Srour, Edward F.; Ingram Jr., David A.The non-hematopoietic, stationary stromal cells located inside and surrounding skin-draining lymph nodes play a key role in regulating immune responses. We studied distinct populations of lymph node stromal cells from both human subjects and animal models in order to describe their phenotype and function. In the mouse model, we studied two distinct populations: an endothelial cell population expressing Ly51 and MHC-II, and an epithelial cell population expressing the epithelial adhesion molecule EpCAM. Analysis of intra-nodal and extra-nodal lymph node (CD45-) stromal cells through flow cytometry and qPCR provides a general phenotypic profile of the distinct populations. My research focused on the EpCAM+ epithelial cell population located in the fat pad surrounding the skin draining lymph nodes. The EpCAM+ population has been characterized by surface marker phenotype, anatomic location, and gene expression profile. This population demonstrates the ability to inhibit the activation and proliferation of both CD4 and CD8 T cells. This population may play a role in suppressing overactive inflammation and auto-reactive T cells that escaped thymic deletion. The other major arm of my project consisted of identifying a novel endothelial cell population in human lymph nodes. Freshly resected lymph nodes were processed into single cell suspensions and selected for non-hematopoietic CD45- stromal cells. The unique endothelial population expressing CD34 HLA-DR was then characterized and analyzed for anatomic position, surface marker expression, and gene profiles. Overall, these studies emphasize the importance of stationary lymph node stromal cells to our functioning immune systems, and may have clinical relevance to autoimmune diseases, inflammation, and bone marrow transplantation.