- Browse by Subject
Browsing by Subject "Enolase 1"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Conversion of Osteoclasts into Bone-Protective, Tumor-Suppressing Cells(MDPI, 2021-11-09) Li, Ke-Xin; Sun, Xun; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyOsteoclasts are a driver of a vicious bone-destructive cycle with breast cancer cells. Here, we examined whether this vicious cycle can be altered into a beneficial one by activating Wnt signaling with its activating agent, BML284. The conditioned medium, derived from Wnt-activated RAW264.7 pre-osteoclast cells (BM CM), reduced the proliferation, migration, and invasion of EO771 mammary tumor cells. The same inhibitory effect was obtained with BML284-treated primary human macrophages. In a mouse model, BM CM reduced the progression of mammary tumors and tumor-induced osteolysis and suppressed the tumor invasion to the lung. It also inhibited the differentiation of RANKL-stimulated osteoclasts and enhanced osteoblast differentiation. BM CM was enriched with atypical tumor-suppressing proteins such as Hsp90ab1 and enolase 1 (Eno1). Immunoprecipitation revealed that extracellular Hsp90ab1 interacted with latent TGFβ (LAP-TGFβ) as an inhibitor of TGFβ activation, while Hsp90ab1 and Eno1 interacted and suppressed tumor progression via CD44, a cell-adhesion receptor and a cancer stem cell marker. This study demonstrated that osteoclast-derived CM can be converted into a bone-protective, tumor-suppressing agent by activating Wnt signaling. The results shed a novel insight on the unexplored function of osteoclasts as a potential bone protector that may develop an unconventional strategy to combat bone metastasis.Item Generation of the tumor-suppressive secretome from tumor cells(Ivyspring International, 2021-07-25) Liu, Shengzhi; Sun, Xun; Li, Kexin; Zha, Rongrong; Feng, Yan; Sano, Tomohiko; Dong, Chuanpeng; Liu, Yunlong; Aryal, Uma K.; Sudo, Akihiro; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyRationale: The progression of cancer cells depends on the soil and building an inhibitory soil might be a therapeutic option. We previously created tumor-suppressive secretomes by activating Wnt signaling in MSCs. Here, we examined whether the anti-tumor secretomes can be produced from tumor cells. Methods: Wnt signaling was activated in tumor cells by overexpressing β-catenin or administering BML284, a Wnt activator. Their conditioned medium (CM) was applied to cancer cells or tissues, and the effects of CM were evaluated. Tumor growth in the mammary fat pad and tibia in C57BL/6 female mice was also evaluated through μCT imaging and histology. Whole-genome proteomics analysis was conducted to determine and characterize novel tumor-suppressing proteins, which were enriched in CM. Results: The overexpression of β-catenin or the administration of BML284 generated tumor-suppressive secretomes from breast, prostate and pancreatic cancer cells. In the mouse model, β-catenin-overexpressing CM reduced tumor growth and tumor-driven bone destruction. This inhibition was also observed with BML284-treated CM. Besides p53 and Trail, proteomics analysis revealed that CM was enriched with enolase 1 (Eno1) and ubiquitin C (Ubc) that presented notable tumor-suppressing actions. Importantly, Eno1 immunoprecipitated CD44, a cell-surface adhesion receptor, and its silencing suppressed Eno1-driven tumor inhibition. A pan-cancer survival analysis revealed that the downregulation of MMP9, Runx2 and Snail by CM had a significant impact on survival outcomes (p < 0.00001). CM presented a selective inhibition of tumor cells compared to non-tumor cells, and it downregulated PD-L1, an immune escape modulator. Conclusions: The tumor-suppressive secretome can be generated from tumor cells, in which β-catenin presented two opposing roles, as an intracellular tumor promoter in tumor cells and a generator of extracellular tumor suppressor in CM. Eno1 was enriched in CM and its interaction with CD44 was involved in Eno1's anti-tumor action. Besides presenting a potential option for treating primary cancers and metastases, the result indicates that aggressive tumors may inhibit the growth of less aggressive tumors via tumor-suppressive secretomes.