- Browse by Subject
Browsing by Subject "Dynamic hydrogels"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions(Elsevier, 2021) Chang, Chun-Yi; Johnson, Hunter C.; Babb, Olivia; Fishel, Melissa L.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyHydrogels with dynamically tunable crosslinking are invaluable for directing stem cell fate and mimicking a stiffening matrix during fibrosis or tumor development. The increases in matrix stiffness during tissue development are often accompanied by the accumulation of extracellular matrices (e.g., collagen, hyaluronic acid (HA)), a phenomenon that has received little attention in the development of dynamic hydrogels. In this contribution, we present a gelatin-based cell-laden hydrogel system capable of being dynamically stiffened while accumulating HA, a key glycosaminoglycans (GAG) increasingly deposited by stromal cells during tumor progression. Central to this strategy is the synthesis of a dually-modified gelatin macromer – gelatin-norbornene-carbohydrazide (GelNB-CH), which is susceptible to both thiol-norbornene photopolymerization and hydrazone click chemistry. We demonstrate that the crosslinking density of cell-laden thiol-norbornene hydrogels can be dynamically tuned via simple incubation with aldehyde-bearing macromers (e.g., oxidized dextran (oDex) or oHA). The GelNB-CH hydrogel system is highly cytocompatible, as demonstrated by in situ encapsulation of pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF). The unique dynamic stiffening scheme provides a platform to study tandem accumulation of HA and elevation in matrix stiffness in the pancreatic tumor microenvironment.Item Dynamic Click Hydrogels for Xeno-Free Culture of Induced Pluripotent Stem Cells(Wiley, 2020-11) Arkenberg, Matthew R.; Dimmitt, Nathan H.; Johnson, Hunter C.; Koehler, Karl R.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyXeno-free, chemically defined poly(ethylene glycol) (PEG)-based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene-click chemistries are integrated to form synthetic, dynamically tunable PEG-peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol-norbornene hydrogels crosslinked by multiarm PEG-norbornene (PEG-NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine-norbornene (Tz-NB) click reaction is then employed to dynamically stiffen the cell-laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono-functionalized PEG-Tz, PEG-mTz, and dualfunctionalized PEG-Tz/mTz that react with PEG-NB to form additional crosslinks in the cell-laden hydrogels. The versatility of Tz-NB stiffening is demonstrated with different Tz-modified macromers or by intermittent incubation of PEG-Tz for temporal stiffening. Finally, the Tz-NB-mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno-free and dynamic stem cell niche.Item Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels(ACS, 2019-03-11) Nguyen, Han D.; Liu, Hung-Yi; Hudson, Britney N.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyEnzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by the enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ crosslinking of macromers containing hydroxyl-phenol groups. The use of HRP on initiating thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the crosslinking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) were used as crosslinkers for forming enzymatically and orthogonally polymerized hydrogels. For HRP-initiated PEG-peptide hydrogel crosslinking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide crosslinkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine crosslinks following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary crosslinking, which dynamically increases hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels provide excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new crosslinking mechanism for preparing modularly and dynamically crosslinked hydrogels.