- Browse by Subject
Browsing by Subject "Down syndrome"
Now showing 1 - 10 of 48
Results Per Page
Sort Options
Item 3D Assessment of Nasopharyngeal and Craniofacial Phenotypes in Ts65Dn Down Syndrome Mice Treated with a Dyrk1a Inhibitor(2014-04-11) Starbuck, John M.; Harrington, Emily; Kula, Katherine S.; Ghoneima, Ahmed A.; Roper, Randall J.Background: Down syndrome (DS) originates from having three copies of chromosome 21 (i.e. Trisomy 21). DS is associated with many detrimental phenotypes including intellectual disabilities, heart defects, abnormal craniofacial development, and obstructive sleep apnea, which develops from restricted nasopharyngeal airways and an underdeveloped mandible. Ts65Dn mice are trisomic for about half of the orthologs on human chromosome 21 and display many phenotypes associated with DS including craniofacial abnormalities. Dyrk1a is found in three copies in Ts65Dn mice and individuals with DS, and thought to be a root cause of the craniofacial phenotypes. Epigallocatechin 3-gallate (EGCG) is a green tea polyphenol and inhibitor of Dyrk1a activity. Purpose: We hypothesize that decreased Dyrk1a activity in Ts65Dn mice will ameliorate craniofacial dysmorphology. Methods: To test our hypothesis we compared Ts65Dn mice with two or three copies of Dyrk1a and compared Ts65Dn mice with and without prenatal EGCG treatment. EGCG treated mothers were fed 200mg/kg EGCG on gestational day 7. Six week old mice were sacrificed and their heads imaged using micro-computed tomography (μCT). From μCT images, we measured nasopharyngeal airway volume and anatomical landmarks (n = 54) from the facial skeleton, cranial vault, cranial base, and mandible. Mean nasopharyngeal airway volumes were graphically compared, and a landmark-based multivariate geometric morphometric approach known as Euclidean Distance Matrix Analysis (EDMA) was carried out to assess local differences in craniofacial morphology between trisomic mouse samples. Results: Our preliminary results indicate that EGCG treatment and reduced Dyrk1a copy number increases mean nasopharyngeal airway volume in Ts65Dn mice. Craniofacial morphometric differences were found among all samples. EGCG treatment increased portions of the mandible and decreased portions of the cranial vault and cranial base. Conclusion: Preliminary analyses suggest that both EGCG treatment and reduced Dyrk1a copy number affect craniofacial morphology.Item A pathway linking pulse pressure to dementia in adults with Down syndrome(Oxford University Press, 2024-05-09) Rizvi, Batool; Lao, Patrick J.; Sathishkumar, Mithra; Taylor, Lisa; Queder, Nazek; McMillan, Liv; Edwards, Natalie C.; Keator, David B.; Doran, Eric; Hom, Christy; Nguyen, Dana; Rosas, H. Diana; Lai, Florence; Schupf, Nicole; Gutierrez, Jose; Silverman, Wayne; Lott, Ira T.; Mapstone, Mark; Wilcock, Donna M.; Head, Elizabeth; Yassa, Michael A.; Brickman, Adam M.; Neurology, School of MedicineAdults with Down syndrome are less likely to have hypertension than neurotypical adults. However, whether blood pressure measures are associated with brain health and clinical outcomes in this population has not been studied in detail. Here, we assessed whether pulse pressure is associated with markers of cerebrovascular disease and is linked to a diagnosis of dementia in adults with Down syndrome via structural imaging markers of cerebrovascular disease and atrophy. The study included participants with Down syndrome from the Alzheimer’s Disease - Down Syndrome study (n = 195, age = 50.6 ± 7.2 years, 44% women, 18% diagnosed with dementia). Higher pulse pressure was associated with greater global, parietal and occipital white matter hyperintensity volume but not with enlarged perivascular spaces, microbleeds or infarcts. Using a structural equation model, we found that pulse pressure was associated with greater white matter hyperintensity volume, which in turn was related to increased neurodegeneration, and subsequent dementia diagnosis. Pulse pressure is an important determinant of brain health and clinical outcomes in individuals with Down syndrome despite the low likelihood of frank hypertension.Item A randomized controlled trial of an online health tool about Down syndrome(Elsevier, 2021) Chung, Jeanhee; Donelan, Karen; Macklin, Eric A.; Schwartz, Alison; Elsharkawi, Ibrahim; Torres, Amy; Hsieh, Yichuan Grace; Parker, Holly; Lorenz, Stephen; Patsiogiannis, Vasiliki; Santoro, Stephanie L.; Wylie, Mark; Clarke, Lloyd; Estey, Greg; Baker, Sandra; Bauer, Patricia E.; Bull, Marilyn; Chicoine, Brian; Cullen, Sarah; Frey-Vogel, Ariel; Gallagher, Maureen; Hasan, Reem; Lamb, Ashley; Majewski, Lisa; Mast, Jawanda; Riddell, Travis; Sepucha, Karen; Skavlem, Melissa; Skotko, Brian G.; Pediatrics, School of MedicinePurpose: We sought to determine if a novel online health tool, called Down Syndrome Clinic to You (DSC2U), could improve adherence to national Down syndrome (DS) guidelines. We also sought to determine if primary care providers (PCPs) and caregivers are satisfied with this personalized online health tool. Methods: In a national, randomized controlled trial of 230 caregivers who had children or dependents with DS without access to a DS specialist, 117 were randomized to receive DSC2U and 113 to receive usual care. The primary outcome was adherence to five health evaluations indicated by national guidelines for DS. DSC2U is completed electronically, in all mobile settings, by caregivers at home. The outputs-personalized checklists-are used during annual wellness visits with the patient's PCP. Results: A total of 213 participants completed a 7-month follow-up evaluation. In the intention-to-treat analysis, the intervention group had a 1.6-fold increase in the number of indicated evaluations that were recommended by the primary care provider or completed compared with controls. Both caregivers and PCPs reported high levels of satisfaction with DSC2U. Conclusions: DSC2U improved adherence to the national DS health-care guidelines with a novel modality that was highly valued by both caregivers and PCPs.Item Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner(Elsevier, 2015-05) Blazek, Joshua D.; Malik, Ahmed M.; Tischbein, Maeve; Arbones, Maria L.; Moore, Clara S.; Roper, Randall J.; Biology, School of ScienceThe relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during embryonic development and results from an increased Dyrk1a gene copy number, a gene hypothesized to play a critical role in many DS phenotypes. Ts65Dn embryos exhibit a lower percent bone volume in the E17.5 femur when compared to euploid embryos. Concomitant with gene copy number, qPCR analysis revealed a ~1.5 fold increase in Dyrk1a transcript levels in the Ts65Dn E17.5 embryonic femur as compared to euploid. Returning Dyrk1a copy number to euploid levels in Ts65Dn, Dyrk1a+/− embryos did not correct the trisomic skeletal phenotype but did return Dyrk1a gene transcript levels to normal. The size and protein expression patterns of the cartilage template during embryonic bone development appear to be unaffected at E14.5 and E17.5 in trisomic embryos. Taken together, these data suggest that the dosage imbalance of genes other than Dyrk1a is involved in the development of the prenatal bone phenotype in Ts65Dn embryos.Item Adapted Dance and Individuals With Down Syndrome: A Phenomenological Approach(Sagamore, 2022-06-01) Swinford, Rachel; Noerr, Kyra; Exercise & Kinesiology, School of Health and Human SciencesIndividuals with Down syndrome (DS) often experience lower levels of physical activity (PA) and social participation when compared to peers without DS. The purpose was to examine the lived experience of participating in the dance program and interpret the meaning of the dance program. Dancers participated in a 6-week adapted dance program and were interviewed after the program. This study investigated the lived experience of a 6-week adapted dance program for 20 individuals with Down syndrome (DS) using interpretive phenomenology. Dancer interviews revealed a primary theme of dancers experiencing joy and happiness while dancing. This research helps advocate opportunities for individuals with DS to experience dance as a social, physical, and intellectual activity. Findings can support future PA and sports initiatives for individuals with intellectual disabilities.Item Art Therapy Interventions for Individuals with Down Syndrome(2015) Tsai, Mu-Chien; King, JulietThis study was an integrative literature review exploring the research published on art therapy interventions with individuals with Down syndrome. In order to expand the collected resources, secondary sources and expanded search terms. such as developmental disabilities and intellectual disability, were used for gathering more data to support this study. Three important outcomes were categorized: Intellectual and communicative difficulties are present; 2) Developmental and behavioral art therapy approaches and haptic art materials are particularly suitable for working with developmentally impaired people; 3) Facilitating personal expression, improving social skills, enhancing self-esteem, and fostering cognitive development are four therapeutic goals for this population. Based on these outcomes and the analyses of the collected data, an art therapy treatment plan for people diagnosed with Down syndrome was generated. The limitations and recommendations were also discussed.Item Behavioral Phenotyping for Down Syndrome in Mice(Wiley, 2020-09) Roper, Randall J.; Goodlett, Charles R.; Martínez de Lagrán, María; Dierssen, Mara; Biology, School of ScienceDown syndrome (DS) is the most frequent genetic cause of intellectual disability, characterized by alterations in different behavioral symptom domains: neurodevelopment, motor behavior, and cognition. As mouse models have the potential to generate data regarding the neurological basis for the specific behavioral profile of DS, and may indicate pharmacological treatments with the potential to affect their behavioral phenotype, it is important to be able to assess disease-relevant behavioral traits in animal models in order to provide biological plausibility to the potential findings. The field is at a juncture that requires assessments that may effectively translate the findings acquired in mouse models to humans with DS. In this article, behavioral tests are described that are relevant to the domains affected in DS. A neurodevelopmental behavioral screen, the balance beam test, and the Multivariate Concentric Square Field test to assess multiple behavioral phenotypes and locomotion are described, discussing the ways to merge these findings to more fully understand cognitive strengths and weaknesses in this population. New directions for approaches to cognitive assessment in mice and humans are discussed.Item Cerebrovascular disease emerges with age and Alzheimer's disease in adults with Down syndrome(Springer Nature, 2024-05-29) Lao, Patrick; Edwards, Natalie; Flores‑Aguilar, Lisi; Alshikho, Mohamad; Rizvi, Batool; Tudorascu, Dana; Rosas, H. Diana; Yassa, Michael; Christian, Bradley T.; Mapstone, Mark; Handen, Benjamin; Zimmerman, Molly E.; Gutierrez, Jose; Wilcock, Donna; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineAdults with Down syndrome have a genetic form of Alzheimer's disease (AD) and evidence of cerebrovascular disease across the AD continuum, despite few systemic vascular risk factors. The onset and progression of AD in Down syndrome is highly age-dependent, but it is unknown at what age cerebrovascular disease emerges and what factors influence its severity. In the Alzheimer's Biomarker Consortium-Down Syndrome study (ABC-DS; n = 242; age = 25-72), we estimated the age inflection point at which MRI-based white matter hyperintensities (WMH), enlarged perivascular spaces (PVS), microbleeds, and infarcts emerge in relation to demographic data, risk factors, amyloid and tau, and AD diagnosis. Enlarged PVS and infarcts appear to develop in the early 30s, while microbleeds, WMH, amyloid, and tau emerge in the mid to late 30s. Age-residualized WMH were higher in women, in individuals with dementia, and with lower body mass index. Participants with hypertension and APOE-ε4 had higher age-residualized PVS and microbleeds, respectively. Lifespan trajectories demonstrate a dramatic cerebrovascular profile in adults with Down syndrome that appears to evolve developmentally in parallel with AD pathophysiology approximately two decades prior to dementia symptoms.Item Cerebrovascular disease is associated with Alzheimer's plasma biomarker concentrations in adults with Down syndrome(Oxford University Press, 2024-09-25) Edwards, Natalie C.; Lao, Patrick J.; Alshikho, Mohamad J.; Ericsson, Olivia M.; Rizvi, Batool; Petersen, Melissa E.; O’Bryant, Sid; Flores Aguilar, Lisi; Simoes, Sabrina; Mapstone, Mark; Tudorascu, Dana L.; Janelidze, Shorena; Hansson, Oskar; Handen, Benjamin L.; Christian, Bradley T.; Lee, Joseph H.; Lai, Florence; Rosas, H. Diana; Zaman, Shahid; Lott, Ira T.; Yassa, Michael A.; Alzheimer’s Biomarkers Consortium–Down Syndrome (ABC-DS) Investigators; Gutierrez, José; Wilcock, Donna M.; Head, Elizabeth; Brickman, Adam M.; Neurology, School of MedicineBy age 40 years, over 90% of adults with Down syndrome have Alzheimer's disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer's disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer's disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer's Biomarkers Consortium-Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer's disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer's disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer's disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer's disease in adults with Down syndrome.Item Characterizing Femoral Structure of the Ts66Yah Mouse Model of Down Syndrome(2023-08) Sloan, Kourtney; Roper, Randall J.; Li, Jiliang; McNulty, Margaret A.; Picard, Christine J.Down syndrome (DS) is caused by the partial or complete trisomy of human chromosome 21 (Hsa21) and can result in skeletal deficits, including lower bone mineral density (BMD) and increased risk of fracture and osteoporosis or osteopenia earlier than the general population. Mouse models of DS have been developed to understand the genetic mechanisms resulting in these phenotypes, but models differ due to the complex genetic nature of DS and differing genome structures between humans and mice. Ts65Dn mice have been a popular model of DS as they contain ~50% of Hsa21 orthologous genes on a freely segregating minichromosome, but there is speculation that the phenotypes are exaggerated by non-Hsa21 orthologous trisomic genes also present. To address this issue, the Ts66Yah mouse model was developed to remove the non-Hsa21 orthologous trisomic genes. In this study, male and female Ts66Yah mouse femurs were evaluated during bone accrual and peak bone mass to investigate structural differences using micro-computed tomography. Additionally, the role of trisomic Dyrk1a, a Hsa21 gene previously linked to bone deficits in Ts65Dn mice, was evaluated through genetic and pharmacological means in Ts66Yah femurs at postnatal day 36. Ts66Yah mice were found to have little or no trabecular deficits at any age evaluated, but sex-dependent cortical deficits were present at all ages investigated. Reducing Dyrk1a copy number in Ts66Yah mice significantly improved cortical deficits but did not return cortical bone to euploid levels. Pharmacological treatment with DYRK1A inhibitor L21 was confounded by multiple variables, making it difficult to draw conclusions about DYRK1A inhibition in this manner. Overall, these results indicate trabecular deficits associated with Ts65Dn mice may be due to the non-Hsa21 orthologous trisomic genes, and more Hsa21 orthologous trisomic genes are necessary to produce trabecular deficits in DS model mice. As more mouse models of DS are developed, multiple models need to be assessed to accurately define DS-associated phenotypes and test potential treatments.