ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Circumferential strain"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Left ventricular circumferential strain and coronary microvascular dysfunction: A report from the Women’s Ischemia Syndrome Evaluation Coronary Vascular Dysfunction (WISE-CVD) Project
    (Elsevier, 2021) Tamarappoo, Balaji; Samuel, T. Jake; Elboudwarej, Omeed; Thomson, Louise E. J.; Aldiwani, Haider; Wei, Janet; Mehta, Puja; Cheng, Susan; Sharif, Behzad; AlBadri, Ahmed; Handberg, Eileen M.; Petersen, John; Pepine, Carl J.; Nelson, Michael D.; Bairey Merz, C. Noel; Graduate Medical Education, School of Medicine
    Aims: Women with ischemia but no obstructive coronary artery disease (INOCA) often have coronary microvascular dysfunction (CMD). Left ventricular (LV) circumferential strain (CS) is often lower in INOCA compared to healthy controls; however, it remains unclear whether CS differs between INOCA women with and without CMD. We hypothesized that CS would be lower in women with CMD, consistent with CMD-induced LV mechanical dysfunction. Methods and results: Cardiac magnetic resonance (cMR) images were examined from women enrolled in the Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction Project. CS by feature tracking in INOCA women with CMD, defined as myocardial perfusion reserve index (MPRI) <1.84 during adenosine-stress perfusion cMR, was compared with CS in women without CMD. In a subset who had invasive coronary function testing (CFT), the relationship between CS and CFT metrics, LV ejection fraction (LVEF) and cardiovascular risk factors was investigated. Among 317 women with INOCA, 174 (55%) had CMD measured by MPRI. CS was greater in women with CMD compared to those without CMD (23.2 ± 2.5% vs. 22.1 ± 3.0%, respectively, P = 0.001). In the subset with CFT (n = 153), greater CS was associated with increased likelihood of reduced vasodilator capacity (OR = 1.33, 95%CI = 1.02-1.72, p = 0.03) and discriminated abnormal vs. normal coronary vascular function compared to CAD risk factors, LVEF and LV concentricity (AUC: 0.82 [0.73-0.96 95%CI] vs. 0.65 [0.60-0.71 95%CI], respectively, P = 0.007). Conclusion: The data indicate that LV circumferential strain is related to and predicts CMD, although in a direction contrary with our hypothesis, which may represent an early sign of LV mechanical dysfunction in CMD.
  • Loading...
    Thumbnail Image
    Item
    Non-contrast cardiovascular magnetic resonance detection of myocardial fibrosis in Duchenne muscular dystrophy
    (Elsevier, 2021-04-29) Raucci, Frank J., Jr.; Xu, Meng; George‑Durrett, Kristen; Crum, Kimberly; Slaughter, James C.; Parra, David A.; Markham, Larry W.; Soslow, Jonathan H.; Pediatrics, School of Medicine
    Background: Duchenne muscular dystrophy (DMD) leads to progressive cardiomyopathy. Detection of myocardial fibrosis with late gadolinium enhancement (LGE) by cardiovascular magnetic resonance (CMR) is critical for clinical management. Due to concerns of brain deposition of gadolinium, non-contrast methods for detecting and monitoring myocardial fibrosis would be beneficial. Objectives: We hypothesized that native T1 mapping and/or circumferential (εcc) and longitudinal (εls) strain can detect myocardial fibrosis. Methods: 156 CMRs with gadolinium were performed in 66 DMD boys and included: (1) left ventricular ejection fraction (LVEF), (2) LGE, (3) native T1 mapping and myocardial tagging (εcc-tag measured using harmonic phase analysis). LGE was graded as: (1) presence/absence by segment, slice, and globally; (2) global severity from 0 (no LGE) to 4 (severe); (3) percent LGE using full width half maximum (FWHM). εls and εcc measured using feature tracking. Regression models to predict LGE included native T1 and either εcc-tag or εls and εcc measured at each segment, slice, and globally. Results: Mean age and LVEF at first CMR were 14 years and 54%, respectively. Global εls and εcc strongly predicted presence or absence of LGE (OR 2.6 [1.1, 6.0], p = 0.029, and OR 2.3 [1.0, 5.1], p = 0.049, respectively) while global native T1 did not. Global εcc, εls, and native T1 predicted global severity score (OR 2.6 [1.4, 4.8], p = 0.002, OR 2.6 [1.4, 6.0], p = 0.002, and OR 1.8 [1.1, 3.1], p = 0.025, respectively). εls correlated with change in LGE by severity score (n = 33, 3.8 [1.0, 14.2], p = 0.048) and εcc-tag correlated with change in percent LGE by FWHM (n = 34, OR 0.2 [0.1, 0.9], p = 0.01). Conclusions: Pre-contrast sequences predict presence and severity of LGE, with εls and εcc being more predictive in most models, but there was not an observable advantage over using LVEF as a predictor. Change in LGE was predicted by εls (global severity score) and εcc-tag (FWHM). While statistically significant, our results suggest these sequences are currently not a replacement for LGE and may only have utility in a very limited subset of DMD patients.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University