- Browse by Subject
Browsing by Subject "Cell culture techniques"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Breast Cancer Cell Detection and Characterization from Breast Milk-Derived Cells(American Association for Cancer Research, 2020-11) Bhat-Nakshatri, Poornima; Kumar, Brijesh; Simpson, Ed; Ludwig, Kandice K.; Cox, Mary L.; Gao, Hongyu; Liu, Yunlong; Nakshatri, Harikrishna; Surgery, School of MedicineRadiologic techniques remain the main method for early detection for breast cancer and are critical to achieve a favorable outcome from cancer. However, more sensitive detection methods to complement radiologic techniques are needed to enhance early detection and treatment strategies. Using our recently established culturing method that allows propagation of normal and cancerous breast epithelial cells of luminal origin, flow cytometry characterization, and genomic sequencing, we show that cancer cells can be detected in breast milk. Cells derived from milk from the breast with cancer were enriched for CD49f+/EpCAM-, CD44+/CD24-, and CD271+ cancer stem-like cells (CSC). These CSCs carried mutations within the cytoplasmic retention domain of HDAC6, stop/gain insertion in MORF4L1, and deletion mutations within SWI/SNF complex component SMARCC2. CSCs were sensitive to HDAC6 inhibitors, BET bromodomain inhibitors, and EZH2 inhibitors, as mutations in SWI/SNF complex components are known to increase sensitivity to these drugs. Among cells derived from breast milk of additional ten women not known to have breast cancer, two of them contained cells that were enriched for the CSC phenotype and carried mutations in NF1 or KMT2D, which are frequently mutated in breast cancer. Breast milk-derived cells with NF1 mutations also carried copy-number variations in CDKN2C, PTEN, and REL genes. The approach described here may enable rapid cancer cell characterization including driver mutation detection and therapeutic screening for pregnancy/postpartum breast cancers. Furthermore, this method can be developed as a surveillance or early detection tool for women at high risk for developing breast cancer. SIGNIFICANCE: These findings describe how a simple method for characterization of cancer cells in pregnancy and postpartum breast cancer can be exploited as a surveillance tool for women at risk of developing breast cancer.Item Fast-Relaxing Hydrogels with Reversibly Tunable Mechanics for Dynamic Cancer Cell Culture(Elsevier, 2024) Khine, Yee Yee; Nguyen, Han; Afolabi, Favour; Lin, Chien-Chi; Biomedical Engineering, Purdue School of Engineering and TechnologyThe mechanics of the tumor microenvironment (TME) significantly impact disease progression and the efficacy of anti-cancer therapeutics. While it is recognized that advanced in vitro cancer models will benefit cancer research, none of the current engineered extracellular matrices (ECM) adequately recapitulate the highly dynamic TME. Through integrating reversible boronate-ester bonding and dithiolane ring-opening polymerization, we fabricated synthetic polymer hydrogels with tumor-mimetic fast relaxation and reversibly tunable elastic moduli. Importantly, the crosslinking and dynamic stiffening of matrix mechanics were achieved in the absence of a photoinitiator, often the source of cytotoxicity. Central to this strategy was Poly(PEGA-co-LAA-co-AAPBA) (PELA), a highly defined polymer synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PELA contains dithiolane for initiator-free gel crosslinking, stiffening, and softening, as well as boronic acid for complexation with diol-containing polymers to give rise to tunable viscoelasticity. PELA hydrogels were highly cytocompatible for dynamic culture of patient-derived pancreatic cancer cells. It was found that the fast-relaxing matrix induced mesenchymal phenotype of cancer cells, and dynamic matrix stiffening restricted tumor spheroid growth. Moreover, this new dynamic viscoelastic hydrogel system permitted sequential stiffening and softening to mimic the physical changes of TME.Item Generating Inner Ear Organoids from Mouse Embryonic Stem Cells(Springer, 2016) Longworth-Mills, Emma; Koehler, Karl R.; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of MedicineThis protocol describes a three-dimensional culture method for generating inner ear sensory epithelia, which comprises sensory hair cells and a concurrently arising neuronal population. Mouse embryonic stem cells are initially plated in 96-well plates with differentiation media; following aggregation, Matrigel is added in order to promote epithelialization. A series of small molecule applications is then used over the first 14 days of culture to guide differentiation towards an otic lineage. After 16-20 days, vesicles containing inner ear sensory hair cells and supporting cells arise from the cultured aggregates. Aggregates may be analyzed using immunohistochemistry and electrophysiology techniques. This system serves as a simple and relatively inexpensive in vitro model of inner ear development.Item Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation(Springer Nature, 2021-11-19) Prideaux, Matthew; Wright, Christian S.; Noonan, Megan L.; Yi, Xin; Clinkenbeard, Erica L.; Mevel, Elsa; Wheeler, Jonathan A.; Byers, Sharon; Wijenayaka, Asiri R.; Gronthos, Stan; Sankar, Uma; White, Kenneth E.; Atkins, Gerald J.; Thompson, William R.; Physical Therapy, School of Health and Human SciencesMesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.