- Browse by Subject
Browsing by Subject "Cell dedifferentiation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice(Federation of American Societies for Experimental Biology, 2018-05-29) Tersey, Sarah A.; Levasseur, Esther M.; Syed, Farooq; Farb, Thomas B.; Orr, Kara S.; Nelson, Jennifer B.; Shaw, Janice L.; Bokvist, Krister; Mather, Kieren J.; Mirmira, Raghavendra G.; Pediatrics, School of MedicineLoss of functional islet β-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of β-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of β-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and β-cell mass, death, and dedifferentiation. Compared with LFD controls, β-cell mass increased during the feeding period in HFD animals, and statistically greater β-cell death (unmethylated Ins2) was detectable at 2 and 6 wk after diet initiation. Those times correspond to periods when significant step increases in fasting glucose and glucose intolerance, respectively, were detected. ALDH1A3 and Foxo1 immunostaining of the pancreas revealed evidence of β-cell dedifferentiation by 13 wk when fed an HFD, but not in LFD controls. In conclusion, early episodic β-cell death may be a feature of cellular turnover correlated with changes in glycemia during β-cell mass accrual in obesity, whereas β-cell dedifferentiation may be a feature seen later in established disease.-Tersey, S. A., Levasseur, E. M., Syed, F., Farb, T. B., Orr, K. S., Nelson, J. B., Shaw, J. L., Bokvist, K., Mather, K. J., Mirmira, R. G. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice.Item β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment(Endocrine Society, 2014-06) Halban, Philippe A.; Polonsky, Kenneth S.; Bowden, Donald W.; Hawkins, Meredith A.; Ling, Charlotte; Mather, Kieren J.; Powers, Alvin C.; Rhodes, Christopher J.; Sussel, Lori; Weir, Gordon C.; Medicine, School of MedicineOBJECTIVE: This article examines the foundation of β-cell failure in type 2 diabetes (T2D) and suggests areas for future research on the underlying mechanisms that may lead to improved prevention and treatment. RESEARCH DESIGN AND METHODS: A group of experts participated in a conference on 14-16 October 2013 cosponsored by the Endocrine Society and the American Diabetes Association. A writing group prepared this summary and recommendations. RESULTS: The writing group based this article on conference presentations, discussion, and debate. Topics covered include genetic predisposition, foundations of β-cell failure, natural history of β-cell failure, and impact of therapeutic interventions. CONCLUSIONS: β-Cell failure is central to the development and progression of T2D. It antedates and predicts diabetes onset and progression, is in part genetically determined, and often can be identified with accuracy even though current tests are cumbersome and not well standardized. Multiple pathways underlie decreased β-cell function and mass, some of which may be shared and may also be a consequence of processes that initially caused dysfunction. Goals for future research include to 1) impact the natural history of β-cell failure; 2) identify and characterize genetic loci for T2D; 3) target β-cell signaling, metabolic, and genetic pathways to improve function/mass; 4) develop alternative sources of β-cells for cell-based therapy; 5) focus on metabolic environment to provide indirect benefit to β-cells; 6) improve understanding of the physiology of responses to bypass surgery; and 7) identify circulating factors and neuronal circuits underlying the axis of communication between the brain and β-cells.