- Browse by Subject
Browsing by Subject "Cell culture"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Electrochemical behaviors of micro-arc oxidation coated magnesium alloy(2014) Liu, Jiayang; Zhang, Jing; Chen, Jie; Li, Jiliang; Na, SungsooIn recent years, magnesium alloys, due to their high strength and biocompatibility, have attracted significant interest in medical applications, such as cardiovascular stents, orthopedic implants, and devices. To overcome the high corrosion rate of magnesium alloys, coatings have been developed on the alloy surface. Most coating methods, such as anodic oxidation, polymer coating and chemical conversion coating, cannot produce satisfactory coating to be used in human body environment. Recent studies demonstrate that micro-arc oxidation (MAO) technique can produce hard, dense, wear-resistant and well-adherent oxide coatings for light metals such as aluminum, magnesium, and titanium. Though there are many previous studies, the understanding of processing conditions on coating performance remains elusive. Moreover, previous tests were done in simulated body fluid. No test has been done in a cell culture medium, which is much closer to human body environment than simulated body fluid. In this study, the effect of MAO processing time (1 minute, 5 minutes, 15 minutes, and 20 minutes) on the electrochemical behaviors of the coating in both conventional simulated body fluid and a cell culture medium has been investigated. Additionally a new electrolyte (12 g/L Na2SiO3, 4 g/L NaF and 4 ml/L C3H8O3) has been used in the MAO coating process. Electrochemical behaviors were measured by performing potentiodynamic polarization and electrochemical impedance spectroscopy tests. In addition to the tests in simulated body fluid, the MAO-coated and uncoated samples were immersed in a cell culture medium to investigate the corrosion behaviors and compare the difference in these two kinds of media. The results show that in the immersion tests in conventional simulated body fluid, the 20-minute MAO coated sample has the best resistance to corrosion due to the largest coating thickness. In contrast, in the cell culture medium, all MAO coated samples demonstrate a similar high corrosion resistance behavior, independent of MAO processing time. This is probably due to the organic passive layers formed on the coating surfaces. Additionally, a preliminary finite element model has been developed to simulate the immersion test of magnesium alloy in simulated body fluid. Comparison between the predicted corrosion current density and experimental data is discussed.Item Identification, kinetic and structural characterization of small molecule inhibitors of aldehyde dehydrogenase 3a1 (Aldh3a1) as an adjuvant therapy for reversing cancer chemo-resistance(2013-10) Parajuli, Bibek; Hurley, Thomas D., 1961-; Zhang, Zhong-Yin; Georgiadis, Millie M.; Zhang, Jian-TingALDH isoenzymes are known to impact the sensitivity of certain neoplastic cells toward cyclophosphamides and its analogs. Despite its bone marrow toxicity, cyclophos-phamide is still used to treat various recalcitrant forms of cancer. When activated, cyclo-phosphamide forms aldophosphamide that can spontaneously form the toxic phospho-ramide mustard, an alkylating agent unless detoxified by ALDH isozymes to the carbox-yphosphamide metabolite. Prior work has demonstrated that the ALDH1A1 and ALDH3A1 isoenzymes can convert aldophosphamide to carboxyphosphamide. This has also been verified by over expression and siRNA knockdown studies. Selective small molecule inhibitors for these ALDH isoenzymes are not currently available. We hypothe-sized that novel and selective small molecule inhibitors of ALDH3A1 would enhance cancer cells’ sensitivity toward cyclophosphamide. If successful, this approach can widen the therapeutic treatment window for cyclophosphamides; permitting lower effective dos-ing regimens with reduced toxicity. An esterase based absorbance assay was optimized in a high throughput setting and 101, 000 compounds were screened and two new selective inhibitors for ALDH3A1, which have IC50 values of 0.2 µM (CB7) and 16 µM (CB29) were discovered. These two compounds compete for aldehyde binding, which was vali-dated both by kinetic and crystallographic studies. Structure activity relationship dataset has helped us determine the basis of potency and selectivity of these compounds towards ALDH3A1 activity. Our data is further supported by mafosfamide (an analog of cyclo-phosphamide) chemosensitivity data, performed on lung adenocarcinoma (A549) and gli-oblastoma (SF767) cell lines. Overall, I have identified two compounds, which inhibit ALDH3A1’s dehydrogenase activity selectively and increases sensitization of ALDH3A1 positive cells to aldophosphamide and its analogs. This may have the potential in improving chemotherapeutic efficacy of cyclophosphamide as well as to help us understand better the role of ALDH3A1 in cells. Future work will focus on testing these compounds on other cancer cell lines that involve ALDH3A1 expression as a mode of chemoresistance.Item Neuroprotective Effect Of Thyrotropin-Releasing Hormone (TRH) Against Glutamate Toxicity In VitroYard, Michael; Kubek, Michael J.; Lahiri, Debomoy K.; Murrell, Jill Renee, 1964-Acute and chronic activation of both ionotropic and metabotropic glutamate (glut) receptors is implicated in many neurodegenerative disorders including AD, dementia, epilepsy, stroke and neurotrauma. TRH and glut receptors (ionotropic & metabotropic) receptors are differentially coexpressed in granule and pyramidal neurons of the hippocampus. The author shows TRH to be protective when added to cultured pituitary adenoma (GH-3) cells and neuron-like pheochromocytoma (PC12) cells either prior to, during, or after glut-induced toxicity (Endo. Soc. Abs. 01), and also shows that the possible neuroprotective mechanism may involve heterologous downregulation of the metabotropic glut receptors, using superfused hippocampal slices and noting a reduction of Gαq/11 (SFN Abs. 02). He has also demonstrated that TRH protected against glut toxicity in fetal cortical cultures (Endo. Soc. Abs. 04). To extend these studies he used 14-day cultured rat fetal hippocampal neurons (Day E17) to determine if TRH is protective against toxicity induced by specific ionotropic and metabotropic glut agonists. Neuronal viability and integrity were assessed by trypan blue exclusion and LDH release after 18 hrs following 30 min exposure to glut agonists. Ten µM dihydroxyphenylglycine (DHPG, a Group 1 receptor agonist) + 30 µM N-methyl-D-aspartate (NMDA)-induced toxicity (42% vs contr. P<0.05); whereas, concurrent and continued treatment with 10 uM but not 1uM 3Me-HTRH resulted in less neuronal death and damage (86% vs contr P<0.05; 53% vs contr. P>0.05) respectively. DHPG treatment alone (10 µM) for 30 min. was non-toxic by both criteria (90% vs contr. P<0.05). The data suggest that TRH may be a selective modulator of glut-induced toxicity.Item Protocol for enrichment and functional analysis of human hematopoietic cells from umbilical cord blood(Elsevier, 2024) Gutch, Sarah; Beasley, Lindsay; Cooper, Scott; Kaplan, Mark H.; Capitano, Maegan L.; Ropa, James; Microbiology and Immunology, School of MedicineUmbilical cord blood (CB) is a donor source for hematopoietic cell therapies. Understanding what drives hematopoietic stem and progenitor cell function is critical to our understanding of the usage of CB in hematopoietic cell therapies. Here, we describe how to isolate and analyze the function of human hematopoietic cells from umbilical CB. This protocol demonstrates assays that measure phenotypic properties and hematopoietic cell potency. For complete details on the use and execution of this protocol, please refer to Broxmeyer et al.Item SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress(Wiley, 2014-05) Ou, Xuan; Lee, Man Ryul; Huang, Xinxin; Messina-Graham, Steven; Broxmeyer, Hal E.; Department of Microbiology & Immunology, School of MedicineSIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.