- Browse by Subject
Browsing by Subject "Bone density"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus(Nature Publishing Group, 2017-07-25) Medina-Gomez, Carolina; Kemp, John P.; Dimou, Niki L.; Kreiner, Eskil; Chesi, Alessandra; Zemel, Babette S.; Bønnelykke, Klaus; Boer, Cindy G.; Ahluwalia, Tarunveer S.; Bisgaard, Hans; Evangelou, Evangelos; Heppe, Denise H.M.; Bonewald, Lynda F.; Gorski, Jeffrey P.; Ghanbari, Mohsen; Demissie, Serkalem; Duque, Gustavo; Maurano, Matthew T.; Kiel, Douglas P.; Hsu, Yi-Hsiang; Eerden, Bram C.J. van der; Ackert-Bicknell, Cheryl; Reppe, Sjur; Gautvik, Kaare M.; Raastad, Truls; Karasik, David; Peppel, Jeroen van de; Jaddoe, Vincent W.V.; Uitterlinden, André G.; Tobias, Jonathan H.; Grant, Struan F.A.; Bagos, Pantelis G.; Evans, David M.; Rivadeneira, Fernando; Anatomy and Cell Biology, School of MedicineBone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.Item Bone Density Changes Following Radiotherapy to Vertebral Metastases(Springer Nature, 2021-06-03) Jensen, Garrett L.; Gaddipati, Ravi; Hammonds, Kendall P.; Morrow, Andrew; Swanson, Gregory P.; Radiation Oncology, School of MedicineIntroduction: Patients have increasing longevity and time for bone healing following radiotherapy (RT) for treatment of bone metastases (BM). Attempts to assess the treatment response of bone metastases have been either limited or heavily subjective. Our goal was to try to quantitate cancer-involved bone changes after RT using changes in bone mineral density (BMD) from computer tomographic (CT) imaging. Methods: Retrospectively, 117 spinal metastases were identified that received RT with follow-up CT scans >9 months following CT simulation. Contoured volumes included: the metastasis (gross tumor volume; GTV); the involved vertebra (gross bone volume; GBV); a total lytic volume (Lyt); a dominant lytic volume (Domlyt); a control volume, and the nearest uninvolved, unirradiated vertebra (control bone volume; CBV). The Hounsfield-density calibration curve was used to measure the density of these volumes before and after treatment. Results: Whether using raw or control-adjusted changes, the absolute and percent change in density of the GBV, GTV, Lyt, and Domlyt volumes all significantly increased (each p<0.0001). The increase in the density of Domlyt volumes was greater than that of Lyt volumes (p=0.0465), which were greater than GTV (p=0.0065), which were greater than GBV (p<0.0001). On multivariate analysis, only the biologically effective dose (BED) dose significantly correlated with GTV density change (p=0.0175). K means clustering created groups by initial lesion size, GTV, or GBV density. A significant difference in GTV density change was not detected between any groups. Conclusion: Increases in BMD are associated with healing regardless of lesion size or initial density. A prospective study to determine whether long-term control is related to early density measurements is needed.Item Bone health effects of androgen-deprivation therapy and androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer(Springer Nature, 2021) Hussain, Arif; Tripathi, Abhishek; Pieczonka, Christopher; Cope, Diane; McNatty, Andrea; Logothetis, Christopher; Guise, Theresa; Medicine, School of MedicineBackground: Osteoporosis is a skeletal disorder characterized by compromised bone strength, resulting in increased fracture risk. Patients with prostate cancer may have multiple risk factors contributing to bone fragility: advanced age, hypogonadism, and long-term use of androgen-deprivation therapy. Despite absence of metastatic disease, patients with nonmetastatic castrate-resistant prostate cancer receiving newer androgen receptor inhibitors can experience decreased bone mineral density. A systematic approach to bone health care has been hampered by a simplistic view that does not account for heterogeneity among prostate cancer patients or treatments they receive. This review aims to raise awareness in oncology and urology communities regarding the complexity of bone health, and to provide a framework for management strategies for patients with nonmetastatic castrate-resistant prostate cancer receiving androgen receptor inhibitor treatment. Methods: We searched peer-reviewed literature on the PubMed database using key words "androgen-deprivation therapy," "androgen receptor inhibitors," "bone," "bone complications," and "nonmetastatic prostate cancer" from 2000 to present. Results: We discuss how androgen inhibition affects bone health in patients with nonmetastatic castrate-resistant prostate cancer. We present data from phase 3 trials on the three approved androgen receptor inhibitors with regard to effects on bone. Finally, we present management strategies for maintenance of bone health. Conclusions: In patients with nonmetastatic castrate-resistant prostate cancer, aging, and antiandrogen therapy contribute to bone fragility. Newer androgen receptor inhibitors were associated with falls or fractures in a small subset of patients. Management guidelines include regular assessment of bone density, nutritional guidance, and use of antiresorptive bone health agents when warranted.Item Changes in Bone Quality after Treatment with Etelcalcetide(Wolters Kluwer, 2023) Khairallah, Pascale; Cherasard, Jenna; Sung, Joshua; Agarwal, Sanchita; Aponte, Maria Alejandra; Bucovsky, Mariana; Fusaro, Maria; Silberzweig, Jeffrey; Frumkin, Gail N.; El Hachem, Karim; Schulman, Linda; McMahon, Donald; Allen, Matthew R.; Metzger, Corinne E.; Surowiec, Rachel K.; Wallace, Joseph; Nickolas, Thomas L.; Anatomy, Cell Biology and Physiology, School of MedicineIntroduction: Secondary hyperparathyroidism is associated with osteoporosis and fractures. Etelcalcetide is an intravenous calcimimetic for the control of hyperparathyroidism in patients on hemodialysis. Effects of etelcalcetide on the skeleton are unknown. Methods: In a single-arm, open-label, 36-week prospective trial, we hypothesized that etelcalcetide improves bone quality and strength without damaging bone-tissue quality. Participants were 18 years or older, on hemodialysis ≥1 year, without calcimimetic exposure within 12 weeks of enrollment. We measured pretreatment and post-treatment areal bone mineral density by dual-energy X-ray absorptiometry, central skeleton trabecular microarchitecture by trabecular bone score, and peripheral skeleton volumetric bone density, geometry, microarchitecture, and estimated strength by high-resolution peripheral quantitative computed tomography. Bone-tissue quality was assessed using quadruple-label bone biopsy in a subset of patients. Paired t tests were used in our analysis. Results: Twenty-two participants were enrolled; 13 completed follow-up (mean±SD age 51±14 years, 53% male, and 15% White). Five underwent bone biopsy (mean±SD age 52±16 years and 80% female). Over 36 weeks, parathyroid hormone levels declined 67%±9% ( P < 0.001); areal bone mineral density at the spine, femoral neck, and total hip increased 3%±1%, 7%±2%, and 3%±1%, respectively ( P < 0.05); spine trabecular bone score increased 10%±2% ( P < 0.001); and radius stiffness and failure load trended to a 7%±4% ( P = 0.05) and 6%±4% increase ( P = 0.06), respectively. Bone biopsy demonstrated a decreased bone formation rate (mean difference -25±4 µ m 3 / µ m 2 per year; P < 0.01). Conclusions: Treatment with etelcalcetide for 36 weeks was associated with improvements in central skeleton areal bone mineral density and trabecular quality and lowered bone turnover without affecting bone material properties.Item Effects of Dietary Protein Source and Quantity on Bone Morphology and Body Composition Following a High-Protein Weight-Loss Diet in a Rat Model for Postmenopausal Obesity(MDPI, 2022-05-28) Wright, Christian S.; Hill, Erica R.; Reyes Fernandez, Perla C.; Thompson, William R.; Gallant, Maxime A.; Campbell, Wayne W.; Main, Russell P.; Physical Therapy, School of Health and Human SciencesHigher protein (>30% of total energy, HP)-energy restriction (HP-ER) diets are an effective means to improve body composition and metabolic health. However, weight loss (WL) is associated with bone loss, and the impact of HP-ER diets on bone is mixed and controversial. Recent evidence suggests conflicting outcomes may stem from differences in age, hormonal status, and the predominant source of dietary protein consumed. Therefore, this study investigated the effect of four 12-week energy restriction (ER) diets varying in predominate protein source (beef, milk, soy, casein) and protein quantity (normal protein, NP 15% vs. high, 35%) on bone and body composition outcomes in 32-week-old obese, ovariectomized female rats. Overall, ER decreased body weight, bone quantity (aBMD, aBMC), bone microarchitecture, and body composition parameters. WL was greater with the NP vs. HP-beef and HP-soy diets, and muscle area decreased only with the NP diet. The HP-beef diet exacerbated WL-induced bone loss (increased trabecular separation and endocortical bone formation rates, lower bone retention and trabecular BMC, and more rod-like trabeculae) compared to the HP-soy diet. The HP-milk diet did not augment WL-induced bone loss. Results suggest that specific protein source recommendations may be needed to attenuate the adverse alterations in bone quality following an HP-ER diet in a model of postmenopausal obesity.Item Genome-Wide Mapping and Interrogation of the Nmp4 Antianabolic Bone Axis(Oxford University Press, 2015-09) Childress, Paul; Stayrook, Keith R.; Alvarez, Marta B.; Wang, Zhiping; Shao, Yu; Hernandez-Buquer, Selene; Mack, Justin K.; Grese, Zachary R.; He, Yongzheng; Horan, Daniel; Pavalko, Fredrick M.; Warden, Stuart J.; Robling, Alexander G.; Yang, Feng-Chun; Allen, Matthew R.; Krishnan, Venkatesh; Liu, Yunlong; Bidwell, Joseph P.; Department of Anatomy & Cell Biology, IU School of MedicinePTH is an osteoanabolic for treating osteoporosis but its potency wanes. Disabling the transcription factor nuclear matrix protein 4 (Nmp4) in healthy, ovary-intact mice enhances bone response to PTH and bone morphogenetic protein 2 and protects from unloading-induced osteopenia. These Nmp4(-/-) mice exhibit expanded bone marrow populations of osteoprogenitors and supporting CD8(+) T cells. To determine whether the Nmp4(-/-) phenotype persists in an osteoporosis model we compared PTH response in ovariectomized (ovx) wild-type (WT) and Nmp4(-/-) mice. To identify potential Nmp4 target genes, we performed bioinformatic/pathway profiling on Nmp4 chromatin immunoprecipitation sequencing (ChIP-seq) data. Mice (12 w) were ovx or sham operated 4 weeks before the initiation of PTH therapy. Skeletal phenotype analysis included microcomputed tomography, histomorphometry, serum profiles, fluorescence-activated cell sorting and the growth/mineralization of cultured WT and Nmp4(-/-) bone marrow mesenchymal stem progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-E1 preosteoblasts, murine embryonic stem cells, and 2 blood cell lines. Ovx Nmp4(-/-) mice exhibited an improved response to PTH coupled with elevated numbers of osteoprogenitors and CD8(+) T cells, but were not protected from ovx-induced bone loss. Cultured Nmp4(-/-) MSPCs displayed enhanced proliferation and accelerated mineralization. ChIP-seq/gene ontology analyses identified target genes likely under Nmp4 control as enriched for negative regulators of biosynthetic processes. Interrogation of mRNA transcripts in nondifferentiating and osteogenic differentiating WT and Nmp4(-/-) MSPCs was performed on 90 Nmp4 target genes and differentiation markers. These data suggest that Nmp4 suppresses bone anabolism, in part, by regulating IGF-binding protein expression. Changes in Nmp4 status may lead to improvements in osteoprogenitor response to therapeutic cues.Item High-resolution genome screen for bone mineral density in heterogeneous stock rat(Wiley, 2014-07) Alam, Imranul; Koller, Daniel L.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Díaz-Morán, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Stridh, Pernilla; Dieze, Margarita; Olsson, Tomas; Johannesson, Martina; Baud, Amelie; Econs, Michael J.; Foroud, Tatiana; Department of Medicine, IU School of MedicineWe previously demonstrated that skeletal mass, structure, and biomechanical properties vary considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone mineral density in HS rats. We measured bone phenotypes from 1524 adult male and female HS rats between 17 and 20 weeks of age. Phenotypes included dual-energy X-ray absorptiometry (DXA) measurements for bone mineral content and areal bone mineral density (aBMD) for femur and lumbar spine (L3-L5), and volumetric BMD measurements by CT for the midshaft and distal femur, femur neck, and fifth lumbar vertebra (L5). A total of 70,000 polymorphic single-nucleotide polymorphisms (SNPs) distributed throughout the genome were selected from genotypes obtained from the Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent for each genotyped locus from each of the eight founder HS strains. The haplotypes were tested for association with each bone density phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for BMD phenotypes on chromosomes 2, 9, 10, and 13 meeting a conservative genomewide empiric significance threshold (false discovery rate [FDR] = 5%; p < 3 × 10(-6)). Importantly, most QTLs were localized to very small genomic regions (1-3 megabases [Mb]), allowing us to identify a narrow set of potential candidate genes including both novel genes and genes previously shown to have roles in skeletal development and homeostasis.Item L-β-aminoisobutyric acid, L-BAIBA, a marker of bone mineral density and body mass index, and D-BAIBA of physical performance and age(Springer Nature, 2023-10-11) Lyssikatos, Charalampos; Wang, Zhiying; Liu, Ziyue; Warden, Stuart J.; Brotto, Marco; Bonewald, Lynda; Biostatistics and Health Data Science, School of MedicineAs both L- and D-BAIBA are increased with exercise, we sought to determine if circulating levels would be associated with physical performance. Serum levels of L- and D-BAIBA were quantified in 120 individuals (50% female) aged 20-85 years and categorized as either a "low" (LP), "average" (AP) or "high" performing (HP). Association analysis was performed using Spearman (S) and Pearson (P) correlation. Using Spearman correlation, L-BAIBA positively associated with (1) body mass index BMI (0.23) and total fat mass (0.19) in the 120 participants, (2) total fat mass in the 60 males (0.26), and (3) bone mineral density, BMD, (0.28) in addition to BMI (0.26) in the 60 females. In HP females, L-BAIBA positively associated with BMD (0.50) and lean mass (0.47). D-BAIBA was positively associated with (1) age (P 0.20) in the 120 participants, (2) age (P 0.49) in the LP females and (3) with gait speed (S 0.20) in the 120 participants. However, in HP males, this enantiomer had a negative association with appendicular lean/height (S - 0.52) and in the AP males a negative correlation with BMD (S - 0.47). No associations were observed in HP or AP females, whereas, in LP females, a positive association was observed with grip strength (S 0.45), but a negative with BMD (P - 0.52, S - 0.63) and chair stands (P - 0.47, S - 0.51). L-BAIBA may play a role in BMI and BMD in females, not males, whereas D-BAIBA may be a marker for aging and physical performance. The association of L-BAIBA with BMI and fat mass may reveal novel, not previously described functions for this enantiomer.Item Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.(Elsevier, 2015-10) Weatherholt, Alyssa M.; Avin, Keith G.; Hurd, Andrea L.; Cox, Jacob L.; Marberry, Scott T.; Santoni, Brandon G.; Warden, Stuart J.; Department of Physical Therapy, IU School of Health and Rehabilitation SciencesPeripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans.Item Risk Factors for Fracture in Patients with Coexisting Chronic Kidney Disease and Type 2 Diabetes: An Observational Analysis from the CREDENCE Trial(Hindawi, 2022-05-27) Young, Tamara K.; Toussaint, Nigel D.; Di Tanna, Gian Luca; Arnott, Clare; Hockham, Carinna; Kang, Amy; Schutte, Aletta E.; Perkovic, Vlado; Mahaffey, Kenneth W.; Agarwal, Rajiv; Bakris, George L.; Charytan, David M.; Heerspink, Hiddo J.L.; Levin, Adeera; Pollock, Carol; Wheeler, David C.; Zhang, Hong; Jardine, Meg J.; Medicine, School of MedicineBackground: The fracture pathophysiology associated with type 2 diabetes and chronic kidney disease (CKD) is incompletely understood. We examined individual fracture predictors and prediction sets based on different pathophysiological hypotheses, testing whether any of the sets improved prediction beyond that based on traditional osteoporotic risk factors. Methods: Within the CREDENCE cohort with adjudicated fracture outcomes, we assessed the association of individual factors with fracture using Cox regression models. We used the Akaike information criteria (AIC) and Schwartz Bayes Criterion (SBC) to assess six separate variable sets based on hypothesized associations with fracture, namely, traditional osteoporosis, exploratory general population findings, cardiovascular risk, CKD-mineral and bone disorder, diabetic osteodystrophy, and an all-inclusive set containing all variables. Results: Fracture occurred in 135 (3.1%) participants over a median 2.35 [1.88-2.93] years. Independent fracture predictors were older age (hazard ratio [HR] 1.04, confidence interval [CI] 1.01-1.06), female sex (HR 2.49, CI 1.70-3.65), previous fracture (HR 2.30, CI 1.58-3.34), Asian race (HR 1.74, CI 1.09-2.78), vitamin D therapy requirement (HR 2.05, CI 1.31-3.21), HbA1c (HR 1.14, CI 1.00-1.32), prior cardiovascular event (HR 1.60, CI 1.10-2.33), and serum albumin (HR 0.41, CI 0.23-0.74) (lower albumin associated with greater risk). The goodness of fit of the various hypothesis sets was similar (AIC range 1870.92-1849.51, SBC range 1875.60-1948.04). Conclusion: Independent predictors of fracture were identified in the CREDENCE participants with type 2 diabetes and CKD. Fracture prediction was not improved by models built on alternative pathophysiology hypotheses compared with traditional osteoporosis predictors.