- Browse by Subject
Browsing by Subject "Amino acid sequence"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item An assignment of intrinsically disordered regions of proteins based on NMR structures(Elsevier, 2013) Ota, Motonori; Koike, Ryotaro; Amemiya, Takayuki; Tenno, Takeshi; Romero, Pedro R.; Hiroaki, Hidekazu; Dunker, A. Keith; Fukuchi, Satoshi; Center for Computational Biology and Bioinformatics, School of MedicineIntrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as missing residues in protein structures determined by X-ray crystallography, no protocol has been developed to identify IDRs from structures obtained by Nuclear Magnetic Resonance (NMR). Here, we propose a computational method to assign IDRs based on NMR structures. We compared missing residues of X-ray structures with residue-wise deviations of NMR structures for identical proteins, and derived a threshold deviation that gives the best correlation of ordered and disordered regions of both structures. The obtained threshold of 3.2Å was applied to proteins whose structures were only determined by NMR, and the resulting IDRs were analyzed and compared to those of X-ray structures with no NMR counterpart in terms of sequence length, IDR fraction, protein function, cellular location, and amino acid composition, all of which suggest distinct characteristics. The structural knowledge of IDPs is still inadequate compared with that of structured proteins. Our method can collect and utilize IDRs from structures determined by NMR, potentially enhancing the understanding of IDPs.Item Canonical and variant histones of protozoan parasites(IMR Press, 2011-06-01) Dalmasso, Maria Carolina; Sullivan, William Joseph, Jr.; Angel, Sergio Oscar; Pharmacology and Toxicology, School of MedicineProtozoan parasites have tremendously diverse lifestyles that require adaptation to a remarkable assortment of different environmental conditions. In order to complete their life cycles, protozoan parasites rely on fine-tuning gene expression. In general, protozoa use novel regulatory elements, transcription factors, and epigenetic mechanisms to regulate their transcriptomes. One of the most surprising findings includes the nature of their histones--these primitive eukaryotes lack some histones yet harbor novel histone variants of unknown function. In this review, we describe the histone components of different protozoan parasites based on literature and database searching. We summarize the key discoveries regarding histones and histone variants and their impact on chromatin regulation in protozoan parasites. In addition, we list histone genes IDs, sequences, and genomic localization of several protozoan parasites and Microsporidia histones, obtained from a thorough search of genome databases. We then compare these findings with those observed in higher eukaryotes, allowing us to highlight some novel aspects of epigenetic regulation in protists and to propose questions to be addressed in the upcoming years.Item Characterization of intrinsically disordered regions in proteins informed by human genetic diversity(PLOS, 2022-03-11) Ahmed, Shehab S.; Rifat, Zaara T.; Lohia, Ruchi; Campbell, Arthur J.; Dunker, A. Keith; Rahman, M. Sohel; Iqbal, Sumaiya; Biochemistry and Molecular Biology, School of MedicineAll proteomes contain both proteins and polypeptide segments that don't form a defined three-dimensional structure yet are biologically active-called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase ("UniProt features": active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.Item Cryo-EM structures of tau filaments from Alzheimer's disease(Springer Nature, 2017-07-13) Fitzpatrick, Anthony W.P.; Falcon, Benjamin; He, Shaoda; Murzin, Alexey G.; Murshudov, Garib; Garringer, Holly J.; Crowther, R. Anthony; Ghetti, Bernardino; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineAlzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.Item Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease(Public Library of Science, 2013-06-19) Zulfiqar, Fareeha; Hozo, Iztok; Rangarajan, Sneha; Mariuzza, Roy A.; Dziarski, Roman; Gupta, Dipika; Microbiology and Immunology, School of MedicineInflammatory bowel disease (IBD) is a common disease, includes Crohn's disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.Item MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia(Wiley, 2021) Meng, Linyan; Isohanni, Pirjo; Shao, Yunru; Graham, Brett H.; Hickey, Scott E.; Brooks, Stephanie; Suomalainen, Anu; Joset, Pascal; Steindl, Katharina; Rauch, Anita; Hackenberg, Annette; High, Frances A.; Armstrong-Javors, Amy; Mencacci, Niccolò E.; Gonzàlez-Latapi, Paulina; Kamel, Walaa A.; Al-Hashel, Jasem Y.; Bustos, Bernabé I.; Hernandez, Alejandro V.; Krainc, Dimitri; Lubbe, Steven J.; Van Esch, Hilde; De Luca, Chiara; Ballon, Katleen; Ravelli, Claudia; Burglen, Lydie; Qebibo, Leila; Calame, Daniel G.; Mitani, Tadahiro; Marafi, Dana; Pehlivan, Davut; Saadi, Nebal W.; Sahin, Yavuz; Maroofian, Reza; Efthymiou, Stephanie; Houlden, Henry; Maqbool, Shazia; Rahman, Fatima; Gu, Shen; Posey, Jennifer E.; Lupski, James R.; Hunter, Jill V.; Wangler, Michael F.; Carroll, Christopher J.; Yang, Yaping; Medical and Molecular Genetics, School of MedicineThe Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum.Item On the roles of intrinsically disordered proteins and regions in cell communication and signaling(BMC, 2021-08-30) Bondos, Sarah E.; Dunker, A. Keith; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineFor proteins, the sequence → structure → function paradigm applies primarily to enzymes, transmembrane proteins, and signaling domains. This paradigm is not universal, but rather, in addition to structured proteins, intrinsically disordered proteins and regions (IDPs and IDRs) also carry out crucial biological functions. For these proteins, the sequence → IDP/IDR ensemble → function paradigm applies primarily to signaling and regulatory proteins and regions. Often, in order to carry out function, IDPs or IDRs cooperatively interact, either intra- or inter-molecularly, with structured proteins or other IDPs or intermolecularly with nucleic acids. In this IDP/IDR thematic collection published in Cell Communication and Signaling, thirteen articles are presented that describe IDP/IDR signaling molecules from a variety of organisms from humans to fruit flies and tardigrades (“water bears”) and that describe how these proteins and regions contribute to the function and regulation of cell signaling. Collectively, these papers exhibit the diverse roles of disorder in responding to a wide range of signals as to orchestrate an array of organismal processes. They also show that disorder contributes to signaling in a broad spectrum of species, ranging from micro-organisms to plants and animals.Item Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control(Portland Press, 2004) Sullivan, William J., Jr.; Narasimhan, Jana; Bhatti, Micah M.; Wek, Ronald C.; Pharmacology and Toxicology, School of MedicineThe ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.Item Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins(MDPI, 2023-06-19) Kulkarni, Prakash; Brocca, Stefania; Dunker, A. Keith; Longhi, Sonia; Biochemistry and Molecular Biology, School of MedicineItem STATdb: A Specialised Resource for the STATome(Public Library of Science, 2014-08-26) Patro, C. Pawan K.; Khan, Asif M.; Tan, Tin Wee; Fu, Xin-Yuan; Microbiology and Immunology, School of MedicineSignal transducers and activators of transcription (STAT) proteins are key signalling molecules in metazoans, implicated in various cellular processes. Increased research in the field has resulted in the accumulation of STAT sequence and structure data, which are scattered across various public databases, missing extensive functional annotations, and prone to effort redundancy because of the dearth of community sharing. Therefore, there is a need to integrate the existing sequence, structure and functional data into a central repository, one that is enriched with annotations and provides a platform for community contributions. Herein, we present STATdb (publicly available at http://statdb.bic.nus.edu.sg/), the first integrated resource for STAT sequences comprising 1540 records representing the known STATome, enriched with existing structural and functional information from various databases and literature and including manual annotations. STATdb provides advanced features for data visualization, analysis and prediction, and community contributions. A key feature is a meta-predictor to characterise STAT sequences based on a novel classification that integrates STAT domain architecture, lineage and function. A curation policy workflow has been devised for regulated and structured community contributions, with an update policy for the seamless integration of new data and annotations.