- Browse by Subject
Browsing by Subject "AKI"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Acute Kidney Injury Associated With Urinary Stone Disease in Children and Young Adults Presenting to a Pediatric Emergency Department(Frontiers Media, 2020-11-30) Farris, Nicholas; Raina, Rupesh; Tibrewal, Abhishek; Brown, Miraides; Colvis, Maria; Schwaderer, Andrew; Kusumi, Kirsten; Pediatrics, School of MedicineBackground: Acute kidney injury (AKI) due to urinary stone disease (USD) is rare in adults; AKI rates in children with USD may be higher, and emerging data links stones to chronic kidney disease (CKD) development in adults. Methods: This study is a retrospective analysis of USD patients at a single pediatric hospital system's emergency department (ED). Patients were initially identified by USD ICD codes; USD was then confirmed by imaging or physician documentation; patients had to have baseline creatinine (Cr) and Cr in the ED for comparison to be included. AKI was defined by Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Network (AKIN), and Pediatric Risk, Injury, Failure, Loss, End Stage (pRIFLE). Results: Of the 589 total visits, 264/589 (45%) had data to evaluate for AKI, 23% were AKI(+) and 77% were AKI(-). pRIFLE was most common (82%) and 18% were only positive by AKIN/KDIGO. AKI(+) were more likely to be younger (16.7 vs. 17.4 years, p = 0.046) and more likely to present with vomiting {odds ratio [OR] [95% confidence interval (CI)]: 2.4 [1.4-4.3], p = 0.002}; also, the proportion of AKI(+) was significantly higher in <18 vs. ≥18 years [26.9 vs. 15.5%, p = 0.032, OR (95% CI): 2.0 (1.1-3.9)]. Urinary tract infection (UTI) and obstruction rates were similar between groups. AKI(+) patients had a significant OR <1 suggesting less risk of receiving non-steroidal anti-inflammatory drugs (NSAIDs); however, 51% of them did receive NSAIDs during their ED encounter. AKI(+) patients were more likely to require admission to the hospital (53 vs. 32%, p = 0.001). Conclusion: We have demonstrated a novel association between USD-induced renal colic and AKI in a group of young adults and children. AKI(+) patients were younger and were more likely to present with vomiting. AKI(+) patients did not have higher rates of obstruction or UTI, and 51% of AKI(+) received NSAIDs.Item Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study(American Physiological Society, 2019-10-01) Patidar, Kavish R.; Garimella, Pranav S.; Macedo, Etienne; Slaven, James E.; Ghabril, Marwan S.; Weber, Regina E.; Anderson, Melissa; Orman, Eric S.; Nephew, Lauren D.; Desai, Archita P.; Chalasani, Naga; El-Achkar, Tarek M.; Medicine, School of MedicineAcute kidney injury (AKI) is a common complication in hospitalized patients with cirrhosis. Uromodulin, a protein uniquely produced by the kidney and released both in the urine and circulation, has been shown to regulate AKI and is linked to tubular reserve. Although low levels of urine uromodulin are associated with AKI after cardiac surgery, it is unclear whether circulating uromodulin can stratify the risk of AKI, particularly in a susceptible population such as hospitalized patients with cirrhosis. Thus, we investigated whether plasma uromodulin measured at the time of admission is associated with subsequent hospital-acquired AKI (defined by a rise in serum creatinine >0.3mg/dL within 48 h or ≥ 1.5 times baseline) in patients with cirrhosis. A total of 98 patients [mean age 54 yr, Model for Endstage Liver Disease Sodium (MELD-Na) score 19, and baseline creatinine of 0.95 mg/dL] were included, of which 13% (n = 13) developed AKI. Median uromodulin levels were significantly lower in patients who developed AKI compared with patients who did not (9.30 vs. 13.35 ng/mL, P = 0.02). After adjusting for age, sex, diabetes, hypertension, albumin, and MELD-Na score as covariates on multivariable logistic regression, uromodulin was independently associated with AKI [odd ratios of 1.19 (95% confidence interval 1.02, 1.37; P = 0.02)]. Lower uromodulin levels on admission are associated with increased odds of subsequent AKI in hospitalized patients with cirrhosis. Further studies are needed to better understand the role of uromodulin in the pathogenesis and as a predictive biomarker of AKI in this population. NEW & NOTEWORTHY In this study, we found that admission plasma uromodulin levels are significantly lower in patients who developed subsequent acute kidney injury (AKI) during their hospital stay compared with patients who did not. Additionally, uromodulin is independently associated with AKI development after adjusting for clinically relevant parameters such as age, sex, diabetes, hypertension, severity of cirrhosis, and kidney function. To our knowledge, this is the first study linking plasma uromodulin with AKI development in patients with cirrhosis.Item Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation(Elsevier, 2021) Piret, Sian E.; Attallah, Ahmed A.; Gu, Xiangchen; Guo, Yiqing; Gujarati, Nehaben A.; Henein, Justina; Zollman, Amy; Hato, Takashi; Ma’ayan, Avi; Revelo, Monica P.; Dickman, Kathleen G.; Chen, Chung-Hsin; Shun, Chia-Tung; Rosenquist, Thomas A.; He, John C.; Mallipattu, Sandeep K.; Medicine, School of MedicineLoss of fatty acid β-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.Item Renal endothelial injury and microvascular dysfunction in acute kidney injury(Elsevier, 2015-01) Verma, Sudhanshu Kumar; Molitoris, Bruce A.; Department of Medicine, IU School of MedicineThe kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances.Item Subcutaneous injection of adipose stromal cell-secretome improves renal function and reduces inflammation in established acute kidney injury(Springer Nature, 2024-04-24) Ullah, Md Mahbub; Collett, Jason A.; Monroe, Jacob C.; Traktuev, Dmitry; Coleman, Michael; March, Keith L.; Basile, David P.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. Methods: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. Results: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. Conclusions: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.Item Uromodulin (Tamm–Horsfall protein): guardian of urinary and systemic homeostasis(Oxford, 2020-01) Micanovic, Radmila; LaFavers, Kaice; Garimella, Pranav S.; Wu, Xue-Ru; El-Achkar, Tarek M.; Medicine, School of MedicineBiology has taught us that a protein as abundantly made and conserved among species as Tamm–Horsfall protein (THP or uromodulin) cannot just be a waste product serving no particular purpose. However, for many researchers, THP is merely a nuisance during urine proteome profiling or exosome purification and for clinicians an enigmatic entity without clear disease implications. Thanks to recent human genetic and correlative studies and animal modeling, we now have a renewed appreciation of this highly prevalent protein in not only guarding urinary homeostasis, but also serving as a critical mediator in systemic inter-organ signaling. Beyond a mere barrier that lines the tubules, or a surrogate for nephron mass, mounting evidence suggests that THP is a multifunctional protein critical for modulating renal ion channel activity, salt/water balance, renal and systemic inflammatory response, intertubular communication, mineral crystallization and bacterial adhesion. Indeed, mutations in THP cause a group of inherited kidney diseases, and altered THP expression is associated with increased risks of urinary tract infection, kidney stone, hypertension, hyperuricemia and acute and chronic kidney diseases. Despite the recent surge of information surrounding THP’s physiological functions and disease involvement, our knowledge remains incomplete regarding how THP is normally regulated by external and intrinsic factors, how precisely THP deficiency leads to urinary and systemic pathophysiology and in what clinical settings THP can be used as a theranostic biomarker and a target for modulation to improve patient outcomes.